RESUMO
INTRODUCTION: We present a case of a 58-year-old man with a history of laryngo-pharyngectomy including bilateral thyroidectomy due to hypopharyngeal cancer presenting with lethargy, acute kidney failure, and hypercalcemia. Milk alkali syndrome was diagnosed given the history of high-dose calcium / vitamin D supplementation after ruling out other causes of hypercalcemia. After initial treatment with normal saline, furosemide and denosumab, the patient developed severe symptomatic hypocalcemia as a rare adverse effect of denosumab.
Assuntos
Injúria Renal Aguda , Hipercalcemia , Letargia , Humanos , Hipercalcemia/etiologia , Hipercalcemia/diagnóstico , Masculino , Pessoa de Meia-Idade , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Letargia/etiologia , Diagnóstico Diferencial , Hipocalcemia/diagnóstico , Hipocalcemia/etiologia , Hipocalcemia/tratamento farmacológico , Denosumab/efeitos adversos , Denosumab/uso terapêuticoRESUMO
Grimm, Mirjam, Lucie Ziegler, Annina Seglias, Maamed Mademilov, Kamila Magdieva, Gulzada Mirzalieva, Aijan Taalaibekova, Simone Suter, Simon R. Schneider, Fiona Zoller, Vera Bissig, Lukas Reinhard, Meret Bauer, Julian Müller, Tanja L. Ulrich, Arcangelo F. Carta, Patrick R. Bader, Konstantinos Bitos, Aurelia E. Reiser, Benoit Champigneulle, Damira Ashyralieva, Philipp M. Scheiwiller, Silvia Ulrich, Talant M. Sooronbaev, Michael Furian, and Konrad E. Bloch. SARS-CoV-2 Transmission during High-Altitude Field Studies. High Alt Med Biol. 25:197-204, 2024. Background: Throughout the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic, virus transmission during clinical research was of concern. Therefore, during high-altitude field studies performed in 2021, we took specific COVID-19 precautions and investigated the occurrence of SARS-CoV-2 infection. Methods: From May to September 2021, we performed studies in patients with chronic obstructive pulmonary disease (COPD) and in healthy school-age children in Kyrgyzstan in high-altitude facilities at 3,100 m and 3,250 m and at 760 m. The various implemented COVID-19 safety measures included systematic SARS-CoV-2 rapid antigen testing (RAT). Main outcomes were SARS-CoV-2-RAT-positive rate among participants and staff at initial presentation (prevalence) and SARS-CoV-2-RAT-positive conversion during and within 10 days after studies (incidence). Results: Among 338 participants and staff, SARS-CoV-2-RAT-positive prevalence was 15 (4.4%). During mean ± SD duration of individual study participation of 3.1 ± 1.0 day and within 10 days, RAT-positive conversion occurred in 1/237(0.4%) participants. Among staff working in studies for 31.5 ± 29.3 days, SARS-CoV-2-RAT-positive conversion was 11/101(10.9%). In all 338 individuals involved in the studies over the course of 15.6 weeks, the median SARS-CoV-2-RAT-positive incidence was 0.00%/week (quartiles 0.00; 0.64). Over the same period, the median background incidence among the total Kyrgyz population of 6,636 million was 0.06%/week (0.03; 0.11), p = 0.013 (Wilcoxon rank sum test). Conclusions: Taking precautions by implementing specific safety measures, SARS-CoV-2 transmission during clinical studies was very rare, and the SARS-CoV-2 incidence among participants and staff was lower than that in the general population during the same period. The results are reassuring and may help in decision-making on the conduct of clinical research in similar settings.
Assuntos
Altitude , COVID-19 , SARS-CoV-2 , COVID-19/transmissão , COVID-19/epidemiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-IdadeRESUMO
Background/aims: Amongst numerous travellers to high altitude (HA) are many with the highly prevalent COPD, who are at particular risk for altitude-related adverse health effects (ARAHE). We then investigated the hypoxia-altitude simulation test (HAST) to predict ARAHE in COPD patients travelling to altitude. Methods: This prospective diagnostic accuracy study included 75 COPD patients: 40 women, age 58±9â years, forced expiratory volume in 1â s (FEV1) 40-80% pred, oxygen saturation measured by pulse oximetry (S pO2 ) ≥92% and arterial carbon dioxide tension (P aCO2 ) <6 kPa. Patients underwent baseline evaluation and HAST, breathing normobaric hypoxic air (inspiratory oxygen fraction (F IO2 ) of 15%) for 15â min, at low altitude (760 m). Cut-off values for a positive HAST were set according to British Thoracic Society (BTS) guidelines (arterial oxygen tension (P aO2 ) <6.6 kPa and/or S pO2 <85%). The following day, patients travelled to HA (3100 m) for two overnight stays where ARAHE development including acute mountain sickness (AMS), Lake Louise Score ≥4 and/or AMS score ≥0.7, severe hypoxaemia (S pO2 <80% for >30â min or 75% for >15â min) or intercurrent illness was observed. Results: ARAHE occurred in 50 (66%) patients and 23 out of 75 (31%) were positive on HAST according to S pO2 , and 11 out of 64 (17%) according to P aO2 . For S pO2 /P aO2 we report a sensitivity of 46/25%, specificity of 84/95%, positive predictive value of 85/92% and negative predictive value of 44/37%. Conclusion: In COPD patients ascending to HA, ARAHE are common. Despite an acceptable positive predictive value of the HAST to predict ARAHE, its clinical use is limited by its insufficient sensitivity and overall accuracy. Counselling COPD patients before altitude travel remains challenging and best focuses on early recognition and treatment of ARAHE with oxygen and descent.
RESUMO
BACKGROUND: Pulmonary endarterectomy (PEA) is the treatment of choice for patients with chronic thromboembolic pulmonary hypertension (CTEPH) with accessible lesions. Breathing pure oxygen (hyperoxia) during right heart catheterization (RHC) allows for the calculation of the right-to-left shunt fraction (Qs/Qt). In the absence of intracardiac shunt, Qs/Qt can be used as a marker of ventilation-perfusion mismatch in patients with CTEPH. This study involved investigating Qs/Qt after PEA and its relation to other disease-specific outcomes. STUDY DESIGN AND METHODS: This study is a retrospective study that focuses on patients with operable CTEPH who had Qs/Qt assessment during RHC before and 1 year after PEA. Additionally, 6 min walking distance (6MWD), WHO functional class (WHO-FC), and NT-proBNP were assessed to calculate a four-strata risk score. RESULTS: Overall, 16 patients (6 females) with a median age of 66 years (quartiles 55; 74) were included. After PEA, an improvement in mean pulmonary artery pressure (38 [32; 41] to 24 [18; 28] mmHg), pulmonary vascular resistance (5.7 [4.0; 6.8] to 2.5 [1.4; 3.8] WU), oxygen saturation (92 [88; 93]% to 94 [93; 95]%), WHO-FC, and risk score was observed (all p < 0.05). No improvement in median Qs/Qt could be detected (13.7 [10.0; 17.5]% to 13.0 [11.2; 15.6]%, p = 0.679). A total of 7 patients with improved Qs/Qt had a significant reduction in risk score compared to those without improved Qs/Qt. CONCLUSION: PEA did not alter Qs/Qt assessed after 1 year in operable CTEPH despite an improvement in hemodynamics and risk score, potentially indicating a persistent microvasculopathy. In patients whose shunt fraction improved with PEA, the reduced shunt was associated with an improvement in risk score.
RESUMO
Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV1: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (±SD) between cPaO2 and mPaO2 was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): -7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p < 0.001), and an increase in PaCO2-PETCO2 difference (p < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: -4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients.
RESUMO
Background The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH). Methods and Results Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016-2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m2, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood P<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end-exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg, P=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units, P=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units, P=0.001). Conclusions Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end-exercise, and should be considered and reported when assessing PH.
Assuntos
Hipertensão Pulmonar , Idoso , Exercício Físico , Feminino , Hemodinâmica , Humanos , Hipertensão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Pressão Propulsora Pulmonar , Decúbito DorsalRESUMO
BACKGROUND: Pure oxygen breathing (hyperoxia) may improve hemodynamics in patients with pulmonary hypertension (PH) and allows to calculate right-to-left shunt fraction (Qs/Qt), whereas breathing normobaric hypoxia may accelerate hypoxic pulmonary vasoconstriction (HPV). This study investigates how hyperoxia and hypoxia affect mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PH and whether Qs/Qt influences the changes of mPAP and PVR. STUDY DESIGN AND METHODS: Adults with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) underwent repetitive hemodynamic and blood gas measurements during right heart catheterization (RHC) under normoxia [fractions of inspiratory oxygen (FiO2) 0.21], hypoxia (FiO2 0.15), and hyperoxia (FiO2 1.0) for at least 10 min. RESULTS: We included 149 patients (79/70 PAH/CTEPH, 59% women, mean ± SD 60 ± 17 years). Multivariable regressions (mean change, CI) showed that hypoxia did not affect mPAP and cardiac index, but increased PVR [0.4 (0.1-0.7) WU, p = 0.021] due to decreased pulmonary artery wedge pressure [-0.54 (-0.92 to -0.162), p = 0.005]. Hyperoxia significantly decreased mPAP [-4.4 (-5.5 to -3.3) mmHg, p < 0.001] and PVR [-0.4 (-0.7 to -0.1) WU, p = 0.006] compared with normoxia. The Qs/Qt (14 ± 6%) was >10 in 75% of subjects but changes of mPAP and PVR under hyperoxia and hypoxia were independent of Qs/Qt. CONCLUSION: Acute exposure to hypoxia did not relevantly alter pulmonary hemodynamics indicating a blunted HPV-response in PH. In contrast, hyperoxia remarkably reduced mPAP and PVR, indicating a preserved vasodilator response to oxygen and possibly supporting the oxygen therapy in patients with PH. A high proportion of patients with PH showed increased Qs/Qt, which, however, was not associated with changes in pulmonary hemodynamics in response to changes in FiO2.
RESUMO
BACKGROUND: Patients with unrepaired cyanotic congenital heart disease (CHD) suffer from aggravated hypoxemia during exercise. We tested the hypothesis that supplemental oxygen improves exercise performance in these patients. METHODS: In this randomized, sham-controlled, single-blind, cross-over trial cyanotic CHD-patients underwent four cycle exercise tests to exhaustion, while breathing either oxygen-enriched (FiO2 0.50, oxygen) or ambient air (FiO2 0.21, air) using incremental (IET) or constant work-rate (CWRET) exercise test protocols (75% of maximal work rate achieved under FiO2 0.21). Pulmonary gas-exchange, electrocardiogram, arterial blood gases, oxygen saturation (SpO2), cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. RESULTS: We included seven patients with cyanotic CHD (4 Eisenmenger syndrome, 3 unrepaired cyanotic defects, 4 women) median (quartiles) age 36 (32;50) years, BMI 23 (20;26) kg/m2 and SpO2 at rest 87 (83;89) %. When comparing supplemental oxygen with air during exercise, maximal work-rate in IET increased from 76 (58;114) Watts to 83 (67;136) Watts, median difference 9 (0;22) W (p = 0.046) and CWRET-time increased from 412 s (325;490) to 468 s (415;553), median increase 56 (39;126) s (p = 0.018). In both IET and CWRET SpO2 was significantly higher and ventilatory equivalent for carbon dioxide significantly lower at end-exercise with oxygen compared to air, whereas CTO and QMTO did not significantly differ. CONCLUSIONS: Patients with cyanotic CHD significantly improved their exercise performance, in terms of maximal work-rate and endurance time along with an improved arterial oxygenation and ventilatory efficiency with supplemental oxygen compared to air.
Assuntos
Cardiopatias Congênitas , Hipóxia , Adulto , Teste de Esforço , Feminino , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/terapia , Humanos , Oxigênio , Saturação de Oxigênio , Método Simples-CegoRESUMO
Objective: To evaluate the effects of breathing oxygen-enriched air (oxygen) on exercise performance in patients with pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF). Methods: Ten patients with PH-HFpEF (five women, age 60 ± 9 y, mPAP 37 ± 14 mmHg, PAWP 18 ± 2 mmHg, PVR 3 ± 3 WU, resting SpO2 98 ± 2%) performed two-cycle incremental exercise tests (IET) and two constant-work-rate exercise test (CWRET) at 75% maximal work-rate (W max), each with ambient air (FiO2 0.21) and oxygen (FiO2 0.5) in a randomized, single-blinded, cross-over design. The main outcomes were the change in W max (IET) and cycling time (CWRET) with oxygen vs. air. Blood gases at rest and end-exercise, dyspnea by Borg CR10 score at end-exercise; continuous SpO2, minute ventilation (V'E), carbon dioxide output (V'CO2), and cerebral and quadricep muscle tissue oxygenation (CTO and QMTO) were measured. Results: With oxygen vs. air, W max (IET) increased from 94 ± 36 to 99 ± 36 W, mean difference (95% CI) 5.4 (0.9-9.8) W, p = 0.025, and cycling time (CWRET) from 532 ± 203 to 680 ± 76 s, +148 (31.8-264) s, p = 0.018. At end-exercise with oxygen, Borg dyspnea score and V'E/V'CO2 were lower, whereas PaO2 and end-tidal PaCO2 were higher. Other parameters were unchanged. Conclusion: Patients with PH-HFpEF not revealing resting hypoxemia significantly improved their exercise performance while breathing oxygen-enriched air along with less subjective dyspnea sensation, a better blood oxygenation, and an enhanced ventilatory efficiency. Future studies should investigate whether prolonged training with supplemental oxygen would increase the training effect and, potentially, daily activity for PH-HFpEF patients. Clinical Trial Registration: [clinicaltrials.gov], identifier [NCT04157660].
RESUMO
BACKGROUND: High-altitude pulmonary edema is associated with elevated systolic pulmonary artery pressure (sPAP) and increased extravascular lung water (EVLW). We investigated sPAP and EVLW during repeated exposures to high altitude (HA). METHODS: Healthy lowlanders underwent two identical 7-day HA-cycles, where subjects slept at 2900 m and spent 4-8 h daily at 5050 m, separated by a weeklong break at low altitude (LA). Echocardiography and EVLW by B-lines were measured at 520 m (baseline, LA1), on day one, two and six at 5050 m (HA1-3) and after descent (LA2). RESULTS: We included 21 subjects (median 25 years, body mass index 22 kg/m2, SpO2 98%). SPAP rose from 21 mmHg at LA1 to 38 mmHg at HA1, decreased to 30 mmHg at HA3 (both p < 0.05 vs LA1) and normalized at 20 mmHg at LA2 (p = ns vs LA1). B-lines increased from 0 at LA1 to 6 at HA2 and 7 at HA3 (both p < 0.05 vs LA1) and receded to 1 at LA2 (p = ns vs LA1). Overall, in cycle two, sPAP did not differ (mean difference (95% confidence interval) -0.2(-2.3 to 1.9) mmHg, p = 0.864) but B-lines were more prevalent (+2.3 (1.4-3.1), p < 0.001) compared to cycle 1. Right ventricular systolic function decreased significantly but minimally at 5050 m. CONCLUSIONS: Exposure to 5050 m induced a rapid increase in sPAP. B-lines rose during prolonged exposures to 5050 m, despite gradual decrease in sPAP, indicating excessive hydrostatic pressure might not be solely responsible for EVLW-development. Repeated HA-exposure had no acclimatization effect on EVLW. This may affect workers needing repetitive ascents to altitude and could indicate greater B-line development upon repeated exposure.
Assuntos
Doença da Altitude , Altitude , Doença da Altitude/diagnóstico por imagem , Ecocardiografia , Água Extravascular Pulmonar/diagnóstico por imagem , Humanos , SístoleRESUMO
Aims: To test the acute hemodynamic effect of acetazolamide in patients with pulmonary hypertension (PH) under ambient air and hypoxia. Methods: Patients with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) undergoing right heart catheterization were included in this randomized, placebo-controlled, double-blinded, crossover trial. The main outcome, pulmonary vascular resistance (PVR), further hemodynamics, blood- and cerebral oxygenation were measured 1 h after intravenous administration of 500 mg acetazolamide or placebo-saline on ambient air (normoxia) and at the end of breathing hypoxic gas (FIO2 0.15, hypoxia) for 15 min. Results: 24 PH-patients, 71% men, mean ± SD age 59 ± 14 years, BMI 28 ± 5 kg/m2, PVR 4.7 ± 2.1 WU participated. Mean PVR after acetazolamide vs. placebo was 5.5 ± 3.0 vs. 5.3 ± 3.0 WU; mean difference (95% CI) 0.2 (-0.2-0.6, p = 0.341). Heart rate was higher after acetazolamide (79 ± 12 vs. 77 ± 11 bpm, p = 0.026), pH was lower (7.40 ± 0.02 vs. 7.42 ± 0.03, p = 0.002) but PaCO2 and PaO2 remained unchanged while cerebral tissue oxygenation increased (71 ± 6 vs. 69 ± 6%, p = 0.017). In acute hypoxia, acetazolamide decreased PVR by 0.4 WU (0.0-0.9, p = 0.046) while PaO2 and PaCO2 were not changed. No adverse effects occurred. Conclusions: In patients with PAH/CTEPH, i.v. acetazolamide did not change pulmonary hemodynamics compared to placebo after 1 hour in normoxia but it reduced PVR after subsequent acute exposure to hypoxia. Our findings in normoxia do not suggest a direct acute pulmonary vasodilator effect of acetazolamide. The reduction of PVR during hypoxia requires further corroboration. Whether acetazolamide improves PH when given over a prolonged period by stimulating ventilation, increasing oxygenation, and/or altering vascular inflammation and remodeling remains to be investigated.
RESUMO
Background: Exact and simultaneous measurements of mean pulmonary artery pressure (mPAP) and cardiac output (CO) are crucial to calculate pulmonary vascular resistance (PVR), which is essential to define pulmonary hypertension (PH). Simultaneous measurements of mPAP and CO are not feasible using the direct Fick (DF) method, due to the necessity to sample blood from the catheter-tip. We evaluated a modified DF method, which allows simultaneous measurement of mPAP and CO without needing repetitive blood samples. Methods: Twenty-four patients with pulmonary arterial or chronic thromboembolic PH had repetitive measurements of CO at rest and end-exercise during three phases of a crossover trial. CO was assessed by the original DF method using oxygen uptake, measured by a metabolic unit, and arterial and mixed venous oxygen saturations from co-oximetry of respective blood gases served as reference. These CO measurements were then compared with a modified DF method using pulse oximetry at the catheter- and fingertip. Results: The bias among CO measurements by the two DF methods at rest was -0.26 L/min with limits of agreement of ±1.66 L/min. The percentage error was 28.6%. At the end-exercise, the bias between methods was 0.29 L/min with limits of agreement of ±1.54 L/min and percentage error of 16.1%. Conclusion: Direct Fick using a catheter- and fingertip pulse oximetry (DFp) is a practicable and reliable method for assessing CO in patients with PH. This method has the advantage of allowing simultaneous measurement of PAP and CO, and frequent repetitive measurements are needed during exercise. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02755259, identifier: NCT02755259.
RESUMO
BACKGROUND: The incidence and magnitude of cardiac ischemia and arrhythmias in patients with chronic obstructive pulmonary disease (COPD) during exposure to hypobaric hypoxia is insufficiently studied. We investigated electrocardiogram (ECG) markers of ischemia at rest and during incremental exercise testing (IET) in COPD-patients travelling to 3100 m. STUDY DESIGN AND METHODS: Lowlanders (residence <800 m) with COPD (forced volume in the first second of expiration (FEV1) 40-80% predicted, oxygen saturation (SpO2) ≥92%, arterial partial pressure of carbon dioxide (PaCO2) <6 kPa at 760 m) aged 18 to 75 years, without history of cardiovascular disease underwent 12lead ECG recordings at rest and during cycle IET to exhaustion at 760 m and after acute exposure of 3 h to 3100 m. Mean ST-changes in ECGs averaged over 10s were analyzed for signs of ischemia (≥1 mm horizontal or downsloping ST-segment depression) at rest, peak exercise and 2-min recovery. RESULTS: 80 COPD-patients (51% women, mean ± SD, 56.2 ± 9.6 years, body mass index (BMI) 27.0 ± 4.5 kg/m2, SpO2 94 ± 2%, FEV1 63 ± 10% prEd.) were included. At 3100 m, 2 of 53 (3.8%) patients revealed ≥1 mm horizontal ST-depression during IET vs 0 of 64 at 760 m (p = 0.203). Multivariable mixed regression revealed minor but significant ST-depressions associated with altitude, peak exercise or recovery and rate pressure product (RPP) in multiple leads. CONCLUSION: In this study, ECG recordings at rest and during IET in COPD-patients do not suggest an increased incidence of signs of ischemia with ascent to 3100 m. Whether statistically significant ST changes below the standard threshold of clinical relevance detected in multiple leads reflect a risk of ischemia during prolonged exposure remains to be elucidated.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Adolescente , Adulto , Idoso , Altitude , Eletrocardiografia , Exercício Físico , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Adulto JovemRESUMO
Adult pancreatic acinar cells have the ability to re-enter the cell cycle and proliferate upon injury or tissue loss. Despite this mitotic ability, the extent of acinar proliferation is often limited and unable to completely regenerate the injured tissue or restore the initial volume of the organ, thus leading to pancreatic dysfunction. Identifying molecular determinants of enhanced proliferation is critical to overcome this issue. In this study, we discovered that Murphy Roths Large (MRL/MpJ) mice can be exploited to identify molecular effectors promoting acinar proliferation upon injury, with the ultimate goal to develop therapeutic regimens to boost pancreatic regeneration. Our results show that, upon cerulein-induced acinar injury, cell proliferation was enhanced and cell cycle components up-regulated in the pancreas of MRL/MpJ mice compared to the control strain C57BL/6. Initial damage of acinar cells was exacerbated in these mice, manifested by increased serum levels of pancreatic enzymes, intra-pancreatic trypsinogen activation and acinar cell apoptosis. In addition, MRL/MpJ pancreata presented enhanced inflammation, de-differentiation of acinar cells and acinar-to-ductal metaplasia. Manipulation of inflammatory levels and mitogenic stimulation with the thyroid hormone 5,3-L-tri-iodothyronine revealed that factors derived from initial acinar injury rather than inflammatory injury promote the replicative advantage in MRL/MpJ mice.