Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446552

RESUMO

Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.IMPORTANCE Autotrophic organisms take up and fix DIC, introducing carbon into the biological portion of the global carbon cycle. The mechanisms for DIC uptake and fixation by autotrophic Bacteria and Archaea are likely to be diverse but have been well characterized only for "Cyanobacteria" Based on genome sequences, members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus have a variety of mechanisms for DIC uptake and fixation. We verified that most of these organisms are capable of growing under low-DIC conditions, when they upregulate carboxysome loci and transporter genes collocated with these loci on their chromosomes. When these genes, which fall into four evolutionarily independent families of transporters, are expressed in E. coli, DIC transport is detected. This expansion in known DIC transporters across four families, from organisms from a variety of environments, provides insight into the ecophysiology of autotrophs, as well as a toolkit for engineering microorganisms for carbon-neutral biochemistries of industrial importance.


Assuntos
Dióxido de Carbono/metabolismo , Piscirickettsiaceae/isolamento & purificação , Piscirickettsiaceae/metabolismo , Sulfetos/metabolismo , Processos Autotróficos , Ciclo do Carbono , Dióxido de Carbono/análise , Ecossistema , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética
2.
Phytopathology ; 109(4): 582-592, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30418089

RESUMO

Citrus Huanglongbing (HLB), also known as greening, is a destructive disease caused by the fastidious, phloem-colonizing bacteria Candidatus Liberibacter spp.; 'Ca. Liberibacter asiaticus' (Las) is the most prevalent of the species causing HLB. The Asian citrus psyllid (ACP, Diaphorina citri) transmits Las. HLB is threatening citrus production worldwide, and there is no cure for infected trees. Management strategies targeting diseased trees at different stages of colonization by Las are needed for sustainable citrus production in HLB-endemic regions. We evaluated the effect of the combinations of plant defense elicitors, nitrogen (N) fertilizer, and compost on mildly diseased trees. We tested thermotherapy on severely diseased trees and assessed tree protectors to prevent feeding by ACP, thus preventing Las from being transmitted to new plantings that replaced HLB-moribund trees. After four applications over two consecutive growing seasons we found that the combination of compost, urea, and plant defense elicitors ß-aminobutyric acid, plus ascorbic acid and potassium phosphite with or without salicylic acid, slowed down the progression of HLB and reduced disease severity by approximately 18%, compared with the untreated control. Our data showed no decline in fruit yield, indeed treatment resulted in a higher yield compared with the untreated control. Thermotherapy treatment (55°C for 2 min) exhibited a suppressive effect on growth of Las and progress of HLB in severely diseased trees for 2 to 3 months after treatment. The tree protectors prevented feeding by ACP, and therefore young replant trees remained healthy and free from infection by Las over the 2-year duration of the experiment. Taken together, these results may contribute to a basis for developing a targeted approach to control HLB based on stage of host colonization, application of plant defense elicitors, N fertilizer, compost, thermotherapy, and tree protectors. There is potential to implement these strategies in conjunction with other disease control measures to contribute to sustainable citrus production in HLB-endemic regions.


Assuntos
Citrus , Hemípteros , Temperatura Alta , Imunidade Vegetal , Equipamentos de Proteção , Rhizobiaceae , Animais , Citrus/microbiologia , Citrus/parasitologia , Fertilizantes , Temperatura Alta/uso terapêutico , Doenças das Plantas , Imunidade Vegetal/efeitos dos fármacos , Equipamentos de Proteção/microbiologia , Equipamentos de Proteção/parasitologia , Rhizobiaceae/crescimento & desenvolvimento , Rhizobiaceae/efeitos da radiação , Árvores
3.
Nat Commun ; 14(1): 7838, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030598

RESUMO

The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus/microbiologia , Rhizobiaceae/genética , Liberibacter , Doenças das Plantas/microbiologia , Hemípteros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA