Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Orthod Craniofac Res ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127913

RESUMO

Accelerating orthodontic tooth movement (OTM) is increasingly important for shorter treatment times, which reduces periodontal risks, root resorption and dental caries. Techniques to accelerate OTM focus on stimulating bone remodelling by enhancing osteoclast and osteoblast activity and include both surgical and non-surgical methods. The therapeutic potential of ultrasounds is highly recognized among many medical areas and has shown promising results in modulating bone remodelling and inflammation phenomena. This systematic review aims to collect and analyse the current scientific in vitro and ex vivo evidence on ultrasound stimulation (US) bioeffects in cells implicated in tooth movement. This review was conducted according to PRISMA 2020 guidelines. A bibliographic search was carried out in the PubMed, Scopus and Web of Science databases. Sixteen articles were selected and included in this review. The revised studies suggest that US of 1.0 and 1.5 MHz, delivered at 30 mW/cm2, 10 to 30 min daily over three to 14 days seems to be effective in promoting osteoclastogenic activity, while US of 1.5 MHz, 30 to 90 mW/cm2, in 5- to 20-min sessions delivered daily for 5 to 14 days exhibits the potential to stimulate osteogenic activity and differentiation. Previous research yielded varied evidence of the effectiveness of US in orthodontics. Future animal studies should employ the recommended US parameters and investigate how distinct protocols can differentially impact tissue remodelling pathways. The knowledge arising from this review will ultimately potentiate the application of US to accelerate OTM in the clinical setting.

2.
J Neuroeng Rehabil ; 21(1): 53, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600582

RESUMO

A systematic review was conducted to determine the trends in devices and parameters used for brain photobiomodulation (PBM). The revised studies included clinical and cadaveric approaches, in which light stimuli were applied to the head and/or neck. PubMed, Scopus, Web of Science and Google Scholar databases were used for the systematic search. A total of 2133 records were screened, from which 97 were included in this review. The parameters that were extracted and analysed in each article were the device design, actuation area, actuation site, wavelength, mode of operation, power density, energy density, power output, energy per session and treatment time. To organize device information, 11 categories of devices were defined, according to their characteristics. The most used category of devices was laser handpieces, which relate to 21% of all devices, while 28% of the devices were not described. Studies for cognitive function and physiological characterisation are the most well defined ones and with more tangible results. There is a lack of consistency when reporting PBM studies, with several articles under defining the stimulation protocol, and a wide variety of parameters used for the same health conditions (e.g., Alzheimer's or Parkinson's disease) resulting in positive outcomes. Standardization for the report of these studies is warranted, as well as sham-controlled comparative studies to determine which parameters have the greatest effect on PBM treatments for different neurological conditions.


Assuntos
Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Encéfalo , Cognição , Lasers
3.
Clin Oral Investig ; 28(8): 454, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066793

RESUMO

PURPOSE: The main aim of the present study was to carry out a scoping review on the differences in degree of conversion of monomers regarding several types resin cements, indirect restorative materials, and light-curing procedures used in dentistry. METHOD: A bibliographic review was performed on PubMed using the following search items: "degree of conversion" OR "filler" AND "resin cement" OR "inorganic cement" AND "organic" OR "radiopacity" OR "refractive" OR "transmittance" OR "type" AND "resin composite." The search involved articles published in English language within the last thirteen years. A research question has been formulated following the PICO approach as follow: "How different is the degree of conversion of monomers comparing several types of resin-matrix cements?". RESULTS: Within the 15 selected studies, 8 studies reported a high degree of conversion (DC) of the organic matrix ranging from 70 up to 90% while 7 studies showed lower DC values. Dual-cured resin-matrix cements revealed the highest mean values of DC, flexural strength, and hardness when compared with light- and self-polymerized ones. DC mean values of resin-matrix cements light-cured through a ceramic veneer with 0.4 mm thickness were higher (~ 83%) than those recorded for resin-matrix cements light-cured through a thicker ceramic layer of 1.5 mm (~ 77%). CONCLUSIONS: The highest percentage of degree of conversion of monomers was reported for dual-cured resin-matrix cements and therefore both chemical and light-induced pathways promoted an enhanced polymerization of the material. Similar degree of conversion of the same resin-matrix cement were recorded when the prosthetic structure showed a low thickness. On thick prosthetic structures, translucent materials are required to allow the light transmission achieving the resin-matrix cement. CLINICAL RELEVANCE: The chemical composition of resin-matrix cements and the light-curing mode can affect the polymerization of the organic matrix. Thus, physical properties of the materials can vary leading to early clinical failures at restorative interfaces. Thus, the analysis of the polymerization pathways of resin-matrix cements is significantly beneficial for the clinical performance of the restorative interfaces.


Assuntos
Polimerização , Cimentos de Resina , Cimentos de Resina/química , Resinas Compostas/química , Teste de Materiais , Restauração Dentária Permanente/métodos , Humanos , Cura Luminosa de Adesivos Dentários
4.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891904

RESUMO

Tooth loss during the lifetime of an individual is common. A strategy to treat partial or complete edentulous patients is the placement of dental implants. However, dental implants are subject to bacterial colonization and biofilm formation, which cause an infection named peri-implantitis. The existing long-term treatments for peri-implantitis are generally inefficient. Thus, an electrical circuit was produced with zirconia (Zr) samples using a hot-pressing technique to impregnate silver (Ag) through channels and holes to create a path by LASER texturing. The obtained specimens were characterized according to vitro cytotoxicity, to ensure ZrAg non-toxicity. Furthermore, samples were inoculated with Staphylococcus aureus using 6.5 mA of alternating current (AC). The current was delivered using a potentiostat and the influence on the bacterial concentration was assessed. Using AC, the specimens displayed no bacterial adhesion (Log 7 reduction). The in vitro results presented in this study suggest that this kind of treatment can be an alternative and promising strategy to treat and overcome bacterial adhesion around dental implants that can evolve to biofilm.


Assuntos
Aderência Bacteriana , Biofilmes , Implantes Dentários , Staphylococcus aureus , Zircônio , Implantes Dentários/microbiologia , Zircônio/química , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Humanos , Estimulação Elétrica/métodos , Propriedades de Superfície , Peri-Implantite/microbiologia , Peri-Implantite/terapia , Prata/química , Prata/farmacologia
5.
J Environ Manage ; 363: 121363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850911

RESUMO

The footwear industry significantly impacts the environment, from raw material extraction to waste disposal. Transforming waste into new products is a viable option to mitigate the environmental consequences, reducing the reliance on virgin raw materials. This work aims to develop thermal and acoustic insulation materials using polyester waste from footwear industry. Two nonwoven and two compressed nonwoven structures, comprising 80% polyester waste and 20% commercial recycled polyester (matrix), were produced. The materials were created through needle-punching and compression molding techniques. The study included the production of sandwich and monolayer nonwoven structures, which were evaluated considering area weight, thickness, air permeability, mechanical properties, morphology using field emission scanning electron microscopy, and thermal and acoustic properties. The nonwoven samples presented high tensile strength (893 kPa and 629 kPa) and the highest strain (79.7% and 73.3%) and compressed nonwoven structures showed higher tensile strength (2700 kPa and 1291 kPa) but reduced strain (25.8% and 40.8%). Nonwoven samples showed thermal conductivity of 0.041 W/K.m and 0.037 W/K.m. Compressed nonwoven samples had higher values at 0.060 W/K.m and 0.070 W/K.m. While the sample with the highest conductivity exceeds typical insulation levels, other samples are suitable for thermal insulation. Nonwoven structures exhibited good absorption coefficients (0.640-0.644), suitable for acoustic insulation. Compressed nonwoven structures had lower values (0.291-0.536), unsuitable for this purpose. In summary, this study underscores the potential of 100% recycled polyester structures derived from footwear and textile industry waste, showcasing remarkable acoustic and thermal insulation properties ideal for the construction sector.


Assuntos
Acústica , Sapatos , Resistência à Tração , Poliésteres/química , Reciclagem
6.
Clin Oral Investig ; 27(7): 3331-3345, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069409

RESUMO

OBJECTIVE: The purpose of this study was to perform an integrative review on laser texturing the inner surface of lithium disilicate-reinforced glass ceramic or zirconia to increase their bond strength to resin-matrix cements. MATERIALS AND METHOD: A bibliographic review was performed on PubMed using the following search terms: "zirconia" OR "lithium disilicate" AND "laser" AND "surface" OR "roughness" AND "bond strength" AND "luting agent" OR "resin cement." Studies published in English language until March 15, 2023, were selected regarding the purpose of this study. RESULTS: A total of fifty-six studies were identified althoug thirteen studies were selected. The findings revealed that zirconia surfaces were significantly modified after laser irradiation resulting in macro-scale aligned retentive regions with depth values ranging from 50 to 120 µm. Average roughness values of laser-textured zirconia by Er,Cr:YSGG laser (~ 0.83 µm) were quite similar when compared to grit-blasted zirconia surfaces (~ 0.9 µm) although roughness increased up to 2.4 µm depending on the laser type and parameters. Lithium disilicate-reinforced glass ceramics textured with Er:YAG revealed an average roughness of around 3.5 µm while surfaces textured using Nd:YAG laser revealed an average roughness of 2.69 µm; that was quite similar to the roughness values recorded for etched surfaces (2.64 µm). The shear bond strength (SBS) values of zirconia surfaces textured on Nd:YVO4 laser irradiation were slightly higher (~ 33.5 MPa) than those recorded for grit-blasted zirconia surfaces (28 MPa). Laser-textured zirconia surfaces on CO2 laser revealed higher SBS values (18.1 ±0.8 MPa) than those (9.1 ± 0.56 MPa) recorded for untreated zirconia surfaces. On lithium disilicate-reinforced glass ceramics, higher SBS values to resin-matrix cements were recorded for specimens textured with a combination of fractional CO2 laser irradiation and HF acid etching (~ 22-24 MPa) when compared with grit-blasted specimens (12.2 MPa). Another study revealed SBS values at around 27.5 MPa for Er:YAG-textured lithium disilicate-reinforced glass ceramics to resin-matrix cements. CONCLUSIONS: The laser irradiation at high power increases the roughness of the inner surface of lithium disilicate-reinforced glass ceramic or zirconia leading to an enhanced bond strength to resin-matrix cements. Thus, the laser type and irradiation parameters can be adjusted to enhance the macro- and micro-scale retention of zirconia and glass ceramic surfaces to resin-matrix cements. CLINICAL RELEVANCE: Alternative methods for surface modification of lithium disilicate-reinforced glass ceramic and zirconia surfaces have been assessed to provide proper morphological aspects for enhanced adhesion to resin-matrix cements. An increase in the bond strength of glass ceramics or zirconia to resin-matrix cements can improve the long-term performance of cemented prosthetic structures in the oral cavity.


Assuntos
Colagem Dentária , Lasers de Estado Sólido , Cimentos de Resina/química , Lítio , Dióxido de Carbono , Propriedades de Superfície , Cerâmica/química , Porcelana Dentária/química , Resistência ao Cisalhamento , Teste de Materiais , Zircônio/química
7.
Clin Oral Investig ; 27(9): 5679-5693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37592003

RESUMO

OBJECTIVES: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. METHODS: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation's tests, while Vicker's hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey's test (p < 0.05). RESULTS: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78-80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. CONCLUSIONS: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. CLINICAL SIGNIFICANCE: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation.


Assuntos
Odontologia , Vidro , Cromatografia Gasosa , Módulo de Elasticidade , Dureza
8.
Lasers Med Sci ; 37(1): 77-93, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35022871

RESUMO

The aim of this work was to perform an integrative literature review on the influence of laser irradiation on zirconia implants to enhance surface topographic aspects and the biological response for osseointegration. An electronic search was carried out on the PubMed database using the following search terms: "zirconia" AND "laser" AND "surface modification" OR "surface treatment" AND "dental implants" OR "bone" OR "osteoblast" OR "osseointegration." Of the identified articles, 12 studies were selected in this review. Results reported that the laser irradiation was capable of promoting changes on the zirconia surfaces regarding topographic aspects, roughness, and wettability. An increase in roughness was recorded at micro- and nano-scale and it resulted in an enhanced wettability and biological response. Also, adhesion, spreading, proliferation, and differentiation of osteogenic cells were also enhanced after laser irradiation mainly by using a femtosecond laser at 10nJ and 80 MHz. After 3 months of osseointegration, in vivo studies in dogs revealed a similar average percentage of bone-to-implant contact (BIC) on zirconia surfaces (around 47.9 ± 16%) when compared to standard titanium surfaces (61.73 ±16.27%), denoting that there is no significant difference between such different materials. The laser  approach revealed several parameters that can be used for zirconia surface modification such as irradiation intensity, time, and frequency. Laser irradiation parameters can be optimized and well-controlled to reach desirable surface morphologic aspects and biological response concerning the osseointegration process.


Assuntos
Implantes Dentários , Animais , Planejamento de Prótese Dentária , Cães , Lasers , Osseointegração , Propriedades de Superfície , Titânio , Zircônio
9.
Clin Oral Investig ; 26(9): 5575-5594, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35767045

RESUMO

PURPOSE: The objective of this study was to perform an integrative review on the effect the inorganic fillers on the light transmission through the resin-matrix composites during the light-curing procedure. METHOD: A bibliographic review was performed on PubMed using the following search terms: "fillers" OR "particle" AND "light curing" OR "polymerization" AND "light transmission" OR "light absorption" OR "light irradiance" OR "light attenuation" OR "light diffusion" AND "resin composite." The search involved articles published in English language in the last 10 years. RESULTS: Selected studies reported a decrease in biaxial strength and hardness in traditional resin-matrix composites in function of the depth of polymerization. However, there were no significant differences in biaxial strength and hardness recorded along the polymerization depth of Bulk-Fill™ composites. Strength and hardness were enhanced by increasing the size and content of inorganic fillers although some studies revealed a progressive decrease in the degree of conversion on increasing silica particle size. The translucency of glass-ceramic spherical fillers promoted light diffusion mainly in critical situations such as in the case of deep proximal regions of resin-matrix composites. CONCLUSIONS: The amount of light transmitted through the resin-matrix composites is influenced by the size, content, microstructure, and shape of the inorganic filler particles. The decrease of the degree of conversion affects negatively the physical and mechanical properties of the resin-matrix composites. CLINICAL RELEVANCE: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization. As a consequence, the clinical performance of resin-matrix composites can be compromised leading to variable physical properties and degradation. The polymerization mode of resin-matrix composites can be improved according to the type of inorganic fillers in their chemical composition.


Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas/química , Teste de Materiais , Polimerização , Propriedades de Superfície
10.
Clin Oral Investig ; 26(1): 95-107, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34713360

RESUMO

BACKGROUND: Endodontically treated teeth usually can reveal an extensive loss of dental structure and require the use of intraradicular posts to provide adequate support and retention. Retention of the post depends on the surface treatment of the endodontic post itself and on the root canal dentin as well as on the type of resin-matrix cement. PURPOSE: The main aim of this study was to conduct an integrative review on the influence of different surface treatment methods of glass fiber-reinfored resin composite (GFRC) posts on their push-out bond strength to resin-matrix cements in endodontically treated teeth rehabiliation. METHOD: A literature search was performed on PubMed (via National Library of Medicine) regarding articles published within the last 10 years, using the following combination of search terms: "intracanal post" OR "endodontic post" OR "root canal post" OR "intraradicular post" OR "glass fiber" AND "resin cement" AND "adhesion" OR "bond strength" OR "shear bond strength" OR "push out". RESULTS: Results from the selected studies recorded the highest push-out bond strength around 22.5 MPa) on GFRC posts to resin-matrix cements when the surfaces were pre-treated by grit-blasting with silicate followed by silane conditioning. However, high values of push-out bond strength (21.5 MPa) were also noticed for GFRC posts after etching with hydrogen peroxide followed by silance conditioning. Thus, the highest values of bond strength of endodontic posts to the resin-matrix cements were recorded when a combined physico-chemical approach was assessed. Non-treated surfaces showed the lowest bond strength values between 5 to and 9 MPa. Surface analyses of GFRC posts showed an increased roughness after grit-blasting or etching that promoted a mechanical interlocking of the adhesive and resin-matrix cements. CONCLUSION: The combined treatment of glass fiber-reinforced resin composite post surfaces by physical and chemical methods can promote the increase in roughness and chemical functionalization of the surfaces prior to cementation., That results in a high mechanical interlocking of the resin-matrix cements and a stable retention of the teeth root intracanal posts. CLINICAL RELEVANCE: Combining chemical and physical modification methods of surfaces can provide the most promising adhesion-enhancing pathways of GFRC posts to resin-matrix cements, that can decrease the risk of clinical failures by fracture and detachment of endodontic posts.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Resinas Compostas , Cavidade Pulpar , Análise do Estresse Dentário , Dentina , Vidro , Teste de Materiais , Cimentos de Resina
11.
Clin Oral Investig ; 25(10): 5595-5612, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34432138

RESUMO

OBJECTIVE: The aim of this study was to perform an integrative review on the layer thickness and microstructure of resin-matrix cements around custom-made or standard teeth root intracanal posts. MATERIALS AND METHODS: An electronic search was conducted on the PubMed using a combination of the following scientific terms: intraradicular post, root intracanal post, resin cement, thickness, adaptation, endodontic post, layer thickness, fit, shape, and endodontic core. The literature selection criteria accepted articles published in the English language, up to May 2021, involving in vitro analyses, meta-analyses, randomized controlled trials, and prospective cohort studies. RESULTS: The search identified 154 studies, of which 24 were considered relevant to this study. The selected studies provided important data considering cement layer thickness, tooth preparation, endodontic post, and type of resin-matrix cement. The anatomical variability of root canal systems, such as the oval- or C-shaped, represents a challenge in dental restoration with tooth root intracanal posts. The fitting of intracanal posts to different root regions is variable resulting in thick and irregular layers of resin-matrix cement. Defects like pores, micro-cracks, and micro-gaps were detected in the resin-matrix cement microstructure and represent spots of stress concentration and fracture. Custom-made tooth root intracanal posts provide a proper fitting and decrease the layer thickness of resin-matrix cement. CONCLUSIONS: In fact, the layer thickness of resin-matrix cements depends on the fitting of endodontic posts to tooth root canals. An increase of resin cement thickness causes the appearance of defects like pores, micro-cracks, and micro-gaps that can induce stress concentration and fractures at interfaces. CLINICAL RELEVANCE: The fitting of the endodontic post into the teeth root canal determine the layer thickness of the resin-matrix cement to establish an adequate retention. However, the increase in the thickness of the resin-matrix cement layer can lead to a high number of defects like pores or cracks and therefore decrease the strength of the interface.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Resinas Compostas , Cavidade Pulpar , Análise do Estresse Dentário , Humanos , Teste de Materiais , Estudos Prospectivos , Cimentos de Resina
12.
Clin Oral Investig ; 25(6): 3395-3408, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33783593

RESUMO

OBJECTIVE: The main aim of this study was to conduct an integrative review on the influence of the zirconia veneer thickness on the degree of conversion of resin-matrix cements. MATERIALS AND METHOD: An electronic search was performed on PubMed using a combination of the following search items: zirconia, thickness, veneer, degree of conversion, resin cement, light curing, and polymerization. Articles published in the English language, up to July 2020, were included regarding the influence of ceramic veneer thickness on the degree of conversion of resin-matrix cements. Randomized controlled trials and prospective cohort studies were also evaluated. RESULTS: Of the 21 selected studies, 9 investigated the light-curing effect, while five other articles evaluated the ceramic translucency. Three studies evaluated the degree of conversion of the resin-matrix cement while four articles assessed the veneer thickness. Results revealed a significant decrease of light transmission through the zirconia with a thickness ranging from 0.1 up to 1.5 mm. However, the ultra-thin thickness around 0.1 and 0.3 mm allowed a full polymerization of the dual-curing resin-matrix cement resulting in the integrity of the interface properties. The light-curing process of resin-matrix cements is also affected by the shade, chemical composition, and microstructure of zirconia and resin cement. Optimal conditions of light-curing are required to reach the threshold intensity of light and energy for polymerization of resin-matrix cements. CONCLUSIONS: The increase in zirconia veneer thickness negatively affects the degree of conversion of resin-matrix cements. Also, shade and microstructure are key factor to improve the light curing of resin cements. CLINICAL RELEVANCE: Clinicians should consider the zirconia thickness on resin-based cementation since a higher veneer thickness can negatively affect the light irradiation intensity towards the dual-curing resin-matrix cement. Thus, the degree of conversion of the resin-matrix cement can decrease leading to a low chemical stability (e.g., color instability) and poor mechanical properties.


Assuntos
Cimentos de Resina , Zircônio , Cerâmica , Porcelana Dentária , Humanos , Teste de Materiais , Estudos Prospectivos , Propriedades de Superfície
13.
Lasers Med Sci ; 35(9): 2039-2048, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32556830

RESUMO

Zirconia has been regarded as a promising material for dental implants, and Nd:YAG laser treatment has been proposed as a potential strategy to improve its bioactivity. The main aim of the present study was to evaluate the in vitro behavior of human fetal osteoblasts in contact with laser-textured zirconia implant surfaces assessing the effect of different texture patterns, spacing between laser passes and number of laser passes. Zirconia discs were produced and treated with Nd:YAG laser according to test group variables: texture (microgrooves and micropillar array), distance between surface features (25 µm, 30 µm and 35 µm), and laser passes [1, 2, 4, and 8]. Untextured sandblasted and acid-etched zirconia discs (SBAE) were used as controls. Human osteoblasts (hFOB 1.19) were cultured for 14 days on test and control samples. Morphology and cellular adhesion were observed using scanning electron microscopy (SEM). Cell viability and proliferation were evaluated at 1, 3, 7, and 14 days using a commercial resazurin-based method. Collagen type I was evaluated at 3 days using ELISA. Alkaline phosphatase (ALP) activity was evaluated at 7 days using a colorimetric enzymatic technique. Group comparisons were tested using ANOVA or Mann-Whitney test (Tukey's post hoc) using statistical software, and significance was set at p < 0.05. Cell viability and proliferation increased over time for all groups with statistically higher values for laser-textured groups when compared with control at 7 and 14 days in culture (p < 0.05). Collagen type I levels were higher for study groups (p < 0.05) when compared with control group. No statistically differences were detected for ALP activity levels between texture and control groups (p > 0.05). The results suggest that laser-machined zirconia implant surfaces may benefit biological osteoblast response. However, the type of texture, spacing at the range of 25-35 µm, and number of laser passes did not seem to be relevant variables.


Assuntos
Lasers de Estado Sólido , Osteoblastos/efeitos da radiação , Próteses e Implantes , Zircônio/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , Osteoblastos/citologia , Osteoblastos/ultraestrutura , Propriedades de Superfície
14.
J Prosthet Dent ; 121(3): 547.e1-547.e7, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661878

RESUMO

STATEMENT OF PROBLEM: Infiltrated zirconia has promising mechanical properties. However, information about its optical behavior is scarce. PURPOSE: The purpose of this in vitro study was to evaluate the color and translucency of zirconia submitted to infiltration and aging. MATERIAL AND METHODS: Sixty zirconia disks were machined. Ten disks received no treatment (NT group), 10 disks were immersed in a coloring liquid (A2 group), and 10 disks were immersed in a fluorescent liquid (F group). The other 30 disks were submitted to the same treatments plus glass infiltration (NT+I, A2+I, and F+I groups). The coordinates L*, a*, and b* and the Y tristimulus values were obtained to calculate the color (ΔE00), lightness, chroma, and hue differences; the translucency parameter (TP); and the contrast ratio (CR) associated with the specimens. After aging in an autoclave for 4 hours (T1), new measurements were made. Two- and 3-way ANOVAs were used to analyze color differences, TP, and CR. The lightness, chroma, and hue differences were evaluated by a repeated measures ANOVA. Multiple comparisons were made with the Tukey honestly significant difference (HSD) test (α=.05). RESULTS: The greatest color differences were observed in the A2+I group (11.23 ΔE00) (P<.001). Aging affected the chroma of the colored groups (P=.013 and P=.001) but did not affect their translucency (P=.347 for TP and P=.132 for CR). The greatest TP values were found in the NT and NT+I groups (2.54 and 2.34, respectively), whereas the CR was equal to or close to 1 in all groups. CONCLUSIONS: Color differences were observed in the glass-infiltrated groups. The TP and CR were affected by infiltration. Aging did not influence the optical behavior of the specimens.


Assuntos
Cerâmica , Porcelana Dentária , Cor , Teste de Materiais , Zircônio
15.
Front Robot AI ; 11: 1367474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319197

RESUMO

Introduction: Slip-related falls are a significant concern, particularly for vulnerable populations such as the elderly and individuals with gait disorders, necessitating effective preventive measures. This manuscript presents a biomechanical study of how the lower limbs react to perturbations that can trigger a slip-like fall, with the ultimate goal of identifying target specifications for developing a wearable robotic system for slip-like fall prevention. Methods: Our analysis provides a comprehensive understanding of the natural human biomechanical response to slip perturbations in both slipping and trailing legs, by innovatively collecting parameters from both the sagittal and frontal plane since both play pivotal roles in maintaining stability and preventing falls and thus provide new insights to fall prevention. We investigated various external factors, including gait speed, surface inclination, slipping foot, and perturbation intensity, while collecting diverse data sets encompassing kinematic, spatiotemporal parameters, electromyographic data, as well as torque, range of motion, rotations per minute, detection, and actuation times. Results: The biomechanical response to slip-like perturbations by the hips, knees, and ankles of the slipping leg was characterized by extension, flexion, and plantarflexion moments, respectively. In the trailing leg, responses included hip flexion, knee extension, and ankle plantarflexion. Additionally, these responses were influenced by gait speed, surface inclination, and perturbation intensity. Our study identified target range of motion parameters of 85.19°, 106.34°, and 95.23° for the hips, knees, and ankles, respectively. Furthermore, rotations per minute values ranged from 17.85 to 51.10 for the hip, 21.73 to 63.80 for the knee, and 17.52 to 57.14 for the ankle joints. Finally, flexion/extension torque values were estimated as -3.05 to 3.22 Nm/kg for the hip, -1.70 to 2.34 Nm/kg for the knee, and -2.21 to 0.90 Nm/kg for the ankle joints. Discussion: This study contributes valuable insights into the biomechanical aspects of slip-like fall prevention and informs the development of wearable robotic systems to enhance safety in vulnerable populations.

16.
Dent J (Basel) ; 12(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39195087

RESUMO

This systematic review aims to assess the impact of high (>30 Hz) and low (≤30 Hz) frequency vibrations on orthodontic tooth movement (OTM). Several articles were collected through a systematic search in the databases MEDLINE and SCOPUS, following PRISMA methodology and using a PICO question. Relevant information on selected articles was extracted, and the quality of each study was assessed by the quality assessment tools EPHPP, ROBINS-1 and STAIR. Out of 350 articles, 30 were chosen. Low-frequency vibrations did not seem to accelerate OTM with aligners or fixed appliances, despite some positive outcomes in certain studies. Conversely, high-frequency vibrations were linked to increased aligner change, tooth movement, and space closure with fixed appliances. In vivo studies reported favourable results with high-frequency vibrations (60 Hz to 120 Hz), which stimulate bone biomarkers, facilitating alveolar bone remodelling. The results suggest that high-frequency vibration effectively speeds up orthodontic tooth movement, showing promise in both in vivo and clinical studies. Larger-scale research is needed to strengthen its potential in orthodontics.

17.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893784

RESUMO

The purpose of the present study was to perform a preliminary analysis of the fitting of different fiber-reinforced composite (GFRC) posts to tooth root canals and determine the resin cement layer thickness. The following GFRC posts were assessed: bundle posts (Rebilda GTTM, VOCO, Germany), sleeve system (SAPTM, Angelus Ind, Brazil), and accessory posts (ReforpinTM, Angelus, Brazil). Twenty-four freshly extracted mandibular single-rooted pre-molars were endodontically treated and divided into six groups, according to the type of GFRC post and resin cement (self-adhesive or conventional dual-cured). Then, specimens were cross-sectioned and inspected by optical microscopy regarding the cement layer thickness and presence of defects such as pores, voids, or fissures were assessed. Bundle and accessory posts revealed a regular distribution of resin cement with a lower number of voids than found with sleeve systems. The sleeve system posts showed poor fitting at the apical portion of the root canals. The type of resin cement did not affect the thickness of the interface, although both bundle and accessory posts allow a better distribution of resin cement and fibers. The present preliminary study reveals interesting insights on the fitting of bundle and accessory posts to root dentin and resin cement layer thickness in oval-shape root canals. The sleeve system posts showed adequate fitting only at the coronal portion of the canals.

18.
J Funct Biomater ; 15(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057318

RESUMO

The prevalence of complications due to the presence of biofilms in dental implant surfaces and their relationship with peri-implant diseases, namely peri-implantitis, remain difficult problems to overcome. The information available about the application of electric current on dental implant biofilms; its parameters, namely current level, voltage and exposure time; and related effects are still not enough to understand which individual mechanisms are caused by this technique, culminating in the decrease or eradication of the biofilm. The purpose of this narrative review, based on a systematic search, is to understand the effect of electric current directly applied to biofilms present in dental implants and which parameters are used. For the systematic search, electronic databases including MEDLINE/PubMed, Scopus, and Web of Science, up to and including November 2023, were searched. Seven studies were included. A 12-item checklist was used to assess their methodological quality. All studies used direct/constant electric current; however, that use was not achieved by the same protocol/set-up. Parameters such as current, voltage, resistance, and actuation time were different in all studies. Monospecies and multi-species biofilm were used in the substrate made of titanium. The results indicate that the use of constant and alternating electric current directly applied to dental implant's surfaces is a promising way to treat problems related to biofilms and peri-implant diseases. Future trials, namely in vivo tests, are necessary to reveal all the potential of this treatment.

19.
J Biomech ; 173: 112235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059333

RESUMO

Slips are the leading cause of falls, and understanding slip biomechanics is crucial for preventing falls and mitigating their negative consequences. This study analyses human biomechanical responses to slips, including kinetic, kinematic, spatiotemporal, and EMG variables. We reviewed 41 studies investigating slip-induced falls in lab settings, computational models, and training approaches. Our analysis focused on reactions and effects of factors like age, fatigue, strength, perturbation intensity, and gait speed. Trailing limbs' hip extension and knee flexion interrupt the swing phase earlier, increasing the support base. The slipping leg responds with two phases: hip extension and knee flexion, then hip flexion and knee extension. Furthermore, our analysis revealed that the medial hamstring muscles play an active role in slip recoveries. Their activation in the slipping limb allows for hip extension and knee flexion, while in the trailing limb, their activation results in the foot touching down. Additionally, successful slip recoveries were associated with co-contraction of the Tibialis Anterior (TA) and Medial Gastrocnemius (MG), which increases ankle joint stability and facilitates foot contact with the ground. Our review identifies various factors that influence biomechanical and muscular responses to slips, including age, perturbation intensity, gait speed, muscular fatigue, and muscular strength. These findings have important implications for designing interventions to prevent slip-related falls, including cutting-edge technology devices based on a deeper understanding of slip recoveries. Future research should explore the complex interplay between biomechanics, muscle activation patterns, and environmental factors to improve slip-fall prevention strategies.


Assuntos
Acidentes por Quedas , Músculo Esquelético , Humanos , Fenômenos Biomecânicos , Acidentes por Quedas/prevenção & controle , Músculo Esquelético/fisiologia , Marcha/fisiologia , Articulação do Joelho/fisiologia
20.
Biomimetics (Basel) ; 9(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38534840

RESUMO

Peri-implantitis continues to be one of the major reasons for implant failure. We propose a new approach to the incorporation of MTA into zirconia implant surfaces with Nd:YAG laser and investigate the biological and the microbiological responses of peri-implant cells. Discs of zirconia stabilized with yttria and titanium were produced according to the following four study groups: Nd:YAG laser-textured zirconia coated with MTA (Zr MTA), Nd:YAG laser-textured zirconia (Zr textured), polished zirconia discs, and polished titanium discs (Zr and Ti). Surface roughness was evaluated by contact profilometry. Human osteoblasts (hFOB), gingival fibroblasts (HGF hTERT) and S. oralis were cultured on discs. Cell adhesion and morphology, cell differentiation markers and bacterial growth were evaluated. Zr textured roughness was significantly higher than all other groups. SEM images reveal cellular adhesion at 1 day in all samples in both cell lines. Osteoblasts viability was lower in the Zr MTA group, unlike fibroblasts viability, which was shown to be higher in the Zr MTA group compared with the Zr textured group at 3 and 7 days. Osteocalcin and IL-8 secretion by osteoblasts were higher in Zr MTA. The Zr textured group showed higher IL-8 values released by fibroblasts. No differences in S. oralis CFUs were observed between groups. The present study suggests that zirconia implant surfaces coated with MTA induced fibroblast proliferation and osteoblast differentiation; however, they did not present antibacterial properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA