RESUMO
BACKGROUND AND AIMS: Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS: Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS: NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.
Assuntos
Sistema Biliar , Colestase , Transplante de Fígado , Ductos Biliares , Constrição Patológica/etiologia , Humanos , HipóxiaRESUMO
Traditional measures of short-term stress response such as fecal glucocorticoid metabolites (FGM) are widely used in controlled settings to quantify the intensity of stimulation to which cattle are exposed. However, FGMs present several methodological and interpretation pitfalls when applied on animals in free-ranging conditions. In this study, we proposed an NMR-based fecal metabolomics strategy for noninvasive stress detection in beef cattle. Using a longitudinal sample collection, we monitored the changes in the fecal metabolome and FGM concentrations before and after an acute stressful event. Our results showed that while the fecal metabolome changed as a function of stress (p < 0.001), the mean concentrations of FGM did not change (Levene's test: F-ratio: 0.87, p-value: 0.44). Furthermore, we showed that the interanimal variability observed in the stress response was correlated with the individual fecal microbiota. This result was in line with recent findings, indicating the gut microbiome as a crucial mediator of stress response. We conclude that NMR-based fecal metabolomics proved to be a reliable methodology to assess stress response and that its future applicability to studies for stress monitoring in range animals may be more appropriate than FGM analysis.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bovinos , Fezes , Metaboloma , MetabolômicaRESUMO
An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters.
RESUMO
Metabolomics is the analysis of the concentration profiles of low molecular weight compounds present in biological fluids. Metabolites are nonpeptide molecules representing the end products of cellular activity. Therefore, changes in metabolite concentrations reveal the range of biochemical effects induced by a disease or its therapeutic intervention. Metabolomics has recently become feasible with the accessibility of new technologies, including mass spectrometry and high-resolution proton nuclear magnetic resonance, and has already been applied to several disorders. Indeed, it has the advantage of being a nontargeted approach for identifying potential biomarkers, which means that it does not require a preliminary knowledge of the substances to be studied. In this review, we summarize the main studies in which metabolomic approach was used in some allergic (asthma, atopic dermatitis) and rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus) to explore the feasibility of this technique as a novel diagnostic tool in these complex disorders.
Assuntos
Asma/imunologia , Dermatite Atópica/imunologia , Metabolômica , Doenças Reumáticas/imunologia , Animais , Asma/metabolismo , Dermatite Atópica/metabolismo , Humanos , Mastocitose Sistêmica/imunologia , Mastocitose Sistêmica/metabolismo , Doenças Reumáticas/metabolismoRESUMO
Few field tests have assessed the effects of predator-induced stress on prey fitness, particularly in large carnivore-ungulate systems. Because traditional measures of stress present limitations when applied to free-ranging animals, new strategies and systemic methodologies are needed. Recent studies have shown that stress and anxiety related behaviors can influence the metabolic activity of the gut microbiome in mammal hosts, and these metabolic alterations may aid in identification of stress. In this study, we used NMR-based fecal metabolomic fingerprinting to compare the fecal metabolome, a functional readout of the gut microbiome, of cattle herds grazing in low vs. high wolf-impacted areas within three wolf pack territories. Additionally, we evaluated if other factors (e.g., cattle nutritional state, climate, landscape) besides wolf presence were related to the variation in cattle metabolism. By collecting longitudinal fecal samples from GPS-collared cattle, we found relevant metabolic differences between cattle herds in areas where the probability of wolf pack interaction was higher. Moreover, cattle distance to GPS-collared wolves was the factor most correlated with this difference in cattle metabolism, potentially reflecting the variation in wolf predation risk. We further validated our results through a regression model that reconstructed cattle distances to GPS-collared wolves based on the metabolic difference between cattle herds. Although further research is needed to explore if similar patterns also hold at a finer scale, our results suggests that fecal metabolomic fingerprinting is a promising tool for assessing the physiological responses of prey to predation risk. This novel approach will help improve our knowledge of the consequences of predators beyond the direct effect of predation.
Assuntos
Bovinos , Modelos Biológicos , Comportamento Predatório , Estresse Fisiológico , Lobos , Animais , Ecossistema , Dinâmica Populacional , WashingtonRESUMO
BACKGROUND: Over the past decade, newly designed cancer therapies have not significantly improved the survival of patients diagnosed with Malignant Pleural Mesothelioma (MPM). Among a limited number of genes that are frequently mutated in MPM several of them encode proteins that belong to the HIPPO tumor suppressor pathway. METHODS: The anticancer effects of the top flower standardized extract of Filipendula vulgaris (Dropwort) were characterized in "in vitro" and "in vivo" models of MPM. At the molecular level, two "omic" approaches were used to investigate Dropwort anticancer mechanism of action: a metabolomic profiling and a phosphoarray analysis. RESULTS: We found that Dropwort significantly reduced cell proliferation, viability, migration and in vivo tumor growth of MPM cell lines. Notably, Dropwort affected viability of tumor-initiating MPM cells and synergized with Cisplatin and Pemetrexed in vitro. Metabolomic profiling revealed that Dropwort treatment affected both glycolysis/tricarboxylic acid cycle as for the decreased consumption of glucose, pyruvate, succinate and acetate, and the lipid metabolism. We also document that Dropwort exerted its anticancer effects, at least partially, promoting YAP and TAZ protein ubiquitination. CONCLUSIONS: Our findings reveal that Dropwort is a promising source of natural compound(s) for targeting the HIPPO pathway with chemo-preventive and anticancer implications for MPM management.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Mesotelioma/etiologia , Mesotelioma/metabolismo , Extratos Vegetais/farmacologia , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Filipendula/química , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Extratos Vegetais/química , Ligação ProteicaRESUMO
Many pivotal biological cell processes are affected by gravity. The aim of our study was to evaluate biological and functional effects, differentiation potential and exo-metabolome profile of simulated microgravity (SMG) on human hepatic cell line (HepG2) and human biliary tree stem/progenitor cells (hBTSCs). Both hBTSCs and HepG2 were cultured in a weightless and protected environment SGM produced by the Rotary Cell Culture System (Synthecon) and control condition in normal gravity (NG). Self-replication and differentiation toward mature cells were determined by culturing hBTSCs in Kubota's Medium (KM) and in hormonally defined medium (HDM) tailored for hepatocyte differentiation. The effects on the expression and cell exo-metabolome profiles of SMG versus NG cultures were analyzed. SMG promotes tridimensional (3D) cultures of hBTSCs and HepG2. Significative increase of stemness gene expression (p < 0.05) has been observed in hBTSCs cultured in SMG when compared to NG condition. At the same time, the expression of hepatocyte lineage markers in hBTSCs differentiated by HDM was significantly lower (p < 0.05) in SMG compared to NG, demonstrating an impaired capability of hBTSCs to differentiate in vitro toward mature hepatocytes when cultured in SMG condition. Furthermore, in HepG2 cells the SMG caused a lower (p < 0.05 vs controls) transcription of CYP3A4, a marker of late-stage (i.e. Zone 3) hepatocytes. Exo-metabolome NMR-analysis showed that both cell cultures consumed a higher amount of glucose and lower glutamate in SMG respect to NG (p < 0.05). Moreover, hBTSCs media cultures resulted richer of released fermentation (lactate, acetate) and ketogenesis products (B-hydroxybutyrate) in SGM (p < 0.05) than NG. While, HepG2 cells showed higher consumption of amino acids and release of ketoacids (3-Methyl-2-oxovalerate, 2-oxo-4-methyl-valerate) and formiate with respect to normogravity condition (p < 0.05). Based on our results, SMG could be helpful for developing hBTSCs-derived liver devices. In conclusion, SMG favored the formation of hBTSCs and HepG2 3D cultures and the maintenance of stemness contrasting cell differentiation; these effects being associated with stimulation of glycolytic metabolism. Interestingly, the impact of SMG on stem cell biology should be taken into consideration for workers involved in space medicine programs.
Assuntos
Sistema Biliar/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco/citologia , Ausência de Peso , Diferenciação Celular , Meios de Cultura/química , Meios de Cultura/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Metaboloma , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Células-Tronco/fisiologiaRESUMO
Metabolomics has the capability of providing predisposition, diagnostic, prognostic, and therapeutic biomarker profiles of individual patients, since a large number of metabolites can be measured in an unbiased manner from biological samples. In this setting, 1H-Nuclear Magnetic Resonance (NMR) spectroscopy of biofluids such as plasma, urine, and fecal water offers the opportunity to identify patterns of biomarker changes that reflects the physiological or pathological status of an individual patient.In this chapter, we show as a metabolomics study can be used to diagnose a disease, classifying patients as healthy or as pathological taking into account individual variability.
Assuntos
Fibrose Cística/diagnóstico , Metabolômica/métodos , Biologia de Sistemas/métodos , Biomarcadores/análise , Fibrose Cística/metabolismo , Humanos , Metaboloma , SoftwareRESUMO
BACKGROUND: Cystic fibrosis (CF) is a disorder affecting the respiratory, digestive, reproductive systems and sweat glands. This lethal hereditary disease has known or suspected links to the dysbiosis gut microbiota. High-throughput meta-omics-based approaches may assist in unveiling this complex network of symbiosis modifications. OBJECTIVES: The aim of this study was to provide a predictive and functional model of the gut microbiota enterophenotype of pediatric patients affected by CF under clinical stability. METHODS: Thirty-one fecal samples were collected from CF patients and healthy children (HC) (age range, 1-6 years) and analysed using targeted-metagenomics and metabolomics to characterize the ecology and metabolism of CF-linked gut microbiota. The multidimensional data were low fused and processed by chemometric classification analysis. RESULTS: The fused metagenomics and metabolomics based gut microbiota profile was characterized by a high abundance of Propionibacterium, Staphylococcus and Clostridiaceae, including Clostridium difficile, and a low abundance of Eggerthella, Eubacterium, Ruminococcus, Dorea, Faecalibacterium prausnitzii, and Lachnospiraceae, associated with overexpression of 4-aminobutyrate (GABA), choline, ethanol, propylbutyrate, and pyridine and low levels of sarcosine, 4-methylphenol, uracil, glucose, acetate, phenol, benzaldehyde, and methylacetate. The CF gut microbiota pattern revealed an enterophenotype intrinsically linked to disease, regardless of age, and with dysbiosis uninduced by reduced pancreatic function and only partially related to oral antibiotic administration or lung colonization/infection. CONCLUSIONS: All together, the results obtained suggest that the gut microbiota enterophenotypes of CF, together with endogenous and bacterial CF biomarkers, are direct expression of functional alterations at the intestinal level. Hence, it's possible to infer that CFTR impairment causes the gut ecosystem imbalance.This new understanding of CF host-gut microbiota interactions may be helpful to rationalize novel clinical interventions to improve the affected children's nutritional status and intestinal function.
Assuntos
Bactérias/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/fisiopatologia , Antibacterianos/efeitos adversos , Pré-Escolar , Estudos de Coortes , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Disbiose/microbiologia , Disbiose/fisiopatologia , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/fisiopatologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Mucosa Intestinal/microbiologia , Masculino , Metabolômica , Metagenômica , FenótipoRESUMO
BACKGROUND: Solid tumours are less oxygenated than normal tissues. Consequently, cancer cells acquire to be adapted to a hypoxic environment. The poor oxygenation of solid tumours is also a major indicator of an adverse cancer prognosis and leads to resistance to conventional anticancer treatments. We previously showed the involvement of Che-1/AATF (Che-1) in cancer cell survival under stress conditions. Herein we hypothesized that Che-1 plays a role in the response of cancer cells to hypoxia. METHODS: The human colon adenocarcinoma HCT116 and HT29 cell lines undepleted or depleted for Che-1 expression by siRNA, were treated under normoxic and hypoxic conditions to perform studies regarding the role of this protein in metabolic adaptation and cell proliferation. Che-1 expression was detected using western blot assays; cell metabolism was assessed by NMR spectroscopy and functional assays. Additional molecular studies were performed by RNA seq, qRT-PCR and ChIP analyses. RESULTS: Here we report that Che-1 expression is required for the adaptation of cells to hypoxia, playing an important role in metabolic modulation. Indeed, Che-1 depletion impacted on HIF-1α stabilization, thus downregulating the expression of several genes involved in the response to hypoxia and affecting glucose metabolism. CONCLUSIONS: We show that Che-1 a novel player in the regulation of HIF-1α in response to hypoxia. Notably, we found that Che-1 is required for SIAH-2 expression, a member of E3 ubiquitin ligase family that is involved in the degradation of the hydroxylase PHD3, the master regulator of HIF-1α stability.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias Colorretais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Repressoras/genética , Hipóxia Celular , Proliferação de Células , Neoplasias Colorretais/química , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Células HCT116 , Células HT29 , Humanos , Estabilidade Proteica , Análise de Sequência de RNARESUMO
Metabolomics is the quantification and analysis of the concentration profiles of low-molecular-weight compounds present in biological samples. In particular metabolic footprinting analysis, based on the monitoring of metabolites consumed from and secreted into the growth medium, is a valuable tool for the study of pharmacological and toxicological effects of drugs. Mass spectrometry and nuclear magnetic resonance (NMR) are the two main complementary techniques used in this field. Although less sensitive, NMR gives a direct fingerprint of the system, and the spectra obtained contain metabolic information that can be distilled by chemometric techniques. In this chapter, we present how metabolomic footprinting can be used to assess in vitro a potential chemopreventive molecule as metformin.
Assuntos
Quimioprevenção , Avaliação Pré-Clínica de Medicamentos/métodos , Metabolômica/métodos , Métodos Analíticos de Preparação de Amostras , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Humanos , Espectroscopia de Ressonância MagnéticaRESUMO
OBJECTIVE: A considerable proportion of patients with rheumatoid arthritis (RA) do not have a satisfactory response to biological therapies. We investigated the use of metabolomics approach to identify biomarkers able to anticipate the response to biologics in RA patients. METHODS: Due to gender differences in metabolomic profiling, the analysis was restricted to female patients starting etanercept as the first biological treatment and having a minimum of six months' follow-up. Each patient was evaluated by the same rheumatologist before and after six months of treatment. At this time, the clinical response (good, moderate, none) was determined according to the EUropean League Against Rheumatism (EULAR) criteria, based on both erythrocyte sedimentation rate (EULAR-ESR) and C-reactive protein (EULAR-CRP). Sera collected prior and after six months of etanercept were analyzed by 1H-nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate data analysis. RESULTS: Twenty-seven patients were enrolled: 18 had a good/moderate response and 9 were non responders according to both EULAR-ESR and EULAR-CRP after six months of etanercept. Metabolomic analysis at baseline was able to discriminate good, moderate, and non-responders with a very good predictivity (Q2 = 0.68) and an excellent sensitivity, specificity, and accuracy (100%). In good responders, we found an increase in isoleucine, leucine, valine, alanine, glutamine, tyrosine, and glucose levels and a decrease in 3-hydroxybutyrate levels after six months of treatment with etanercept with respect to baseline. CONCLUSION: Our study confirms the potential of metabolomic analysis to predict the response to biological agents. Changes in metabolic profiles during treatment may help elucidate their mechanism of action.
Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Etanercepte/uso terapêutico , Metabolômica , Adulto , Idoso , Artrite Reumatoide/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cynara scolymus , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Extratos Vegetais/farmacologia , Neoplasias Pleurais/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cynara scolymus/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Invasividade Neoplásica , Fitoterapia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Plantas Medicinais , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by 1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , FenótipoRESUMO
Metabolomics belongs to the family of "-omics" sciences, also comprised of genomics, transcriptomics, and proteomics, all of which share the advantage of a non-targeted approach for identifying biomarkers and profiling the patient. This means that they do not require a preliminary knowledge of the substances to be studied. Moreover, even small quantities of biological fluids or tissues may be utilized for analysis. Metabolomic procedure has become feasible only recently with the advent and accessibility of new high-throughput technologies, including mass spectrometry and nuclear magnetic resonance. The methodology generally involves three defining steps: 1) the acquisition of experimental data, 2) the multivariate statistical analysis, and 3) the projection of the acquired information (profiles) to construct the patient map. Metabolomic analysis has been applied to several disorders: as far as rheumatic diseases are concerned, a few studies have focused on rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, and osteoarthritis. Both murine models and clinical data have shown the potential of this novel tool to contribute to deciding a diagnosis, discriminate between patients based on disease activity, and even predict the response to a particular treatment. The present review fully reports these findings and offers a critical view of the challenges still to be met.
Assuntos
Doenças Autoimunes/metabolismo , Metabolômica/métodos , Doenças Reumáticas/metabolismo , Animais , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Humanos , Prognóstico , Proteômica/métodos , Doenças Reumáticas/diagnóstico , Doenças Reumáticas/tratamento farmacológicoRESUMO
Diabetic patients treated with metformin have a reduced incidence of cancer and cancer-related mortality. Here we show that metformin affects engraftment and growth of breast cancer tumours in mice. This correlates with the induction of metabolic changes compatible with clear anticancer effects. We demonstrate that microRNA modulation underlies the anticancer metabolic actions of metformin. In fact, metformin induces DICER expression and its effects are severely impaired in DICER knocked down cells. Conversely, ectopic expression of DICER recapitulates the effects of metformin in vivo and in vitro. The microRNAs upregulated by metformin belong mainly to energy metabolism pathways. Among the messenger RNAs downregulated by metformin, we found c-MYC, IRS-2 and HIF1alpha. Downregulation of c-MYC requires AMP-activated protein kinase-signalling and mir33a upregulation by metformin. Ectopic expression of c-MYC attenuates the anticancer metabolic effects of metformin. We suggest that DICER modulation, mir33a upregulation and c-MYC targeting have an important role in the anticancer metabolic effects of metformin.