Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 137(9): 910-924, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29167228

RESUMO

BACKGROUND: The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). METHODS: Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (α-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. RESULTS: Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, α-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV α-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. CONCLUSIONS: RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH.


Assuntos
Inibidores da Colinesterase/uso terapêutico , Endotélio Vascular/patologia , Hipertensão Pulmonar/metabolismo , Sistema Nervoso Parassimpático , Artéria Pulmonar/patologia , Brometo de Piridostigmina/uso terapêutico , Disfunção Ventricular Direita/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Remodelação Vascular , Disfunção Ventricular Direita/tratamento farmacológico , Função Ventricular Direita
2.
Cereb Cortex ; 28(4): 1132-1140, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184424

RESUMO

Increasing evidence shows that anodal transcranial direct current stimulation (tDCS) enhances cognitive performance in healthy and clinical population. Such facilitation is supposed to be linked to plastic changes at relevant cortical sites. However, direct electrophysiological evidence for this causal relationship is still missing. Here, we show that cognitive enhancement occurring in healthy human subjects during anodal tDCS is affected by ongoing brain activity, increasing cortical excitability of task-related brain networks only, as directly measured by Transcranial Magnetic Stimulation combined with electroencephalography (TMS-EEG). Specifically, TMS-EEG recordings were performed before and after anodal tDCS coupled with a verbal fluency task. To control for effects of tDCS protocol and TMS target location, 3 conditions were assessed: anodal/sham tDCS with TMS over left premotor cortex, anodal tDCS with TMS over left posterior parietal cortex. Modulation of cortical excitability occurred only at left Brodmann's areas 6, 44, and 45, a key network for language production, after anodal tDCS and TMS over the premotor cortex, and was positively correlated to the degree of cognitive enhancement. Our results suggest that anodal tDCS specifically affects task-related functional networks active while delivering stimulation, and this boost of specific cortical circuits is correlated to the observed cognitive enhancement.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Semântica , Estimulação Magnética Transcraniana/métodos , Comportamento Verbal , Adulto Jovem
3.
Cereb Cortex ; 28(7): 2233-2242, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525544

RESUMO

Measuring the spatiotemporal complexity of cortical responses to direct perturbations provides a reliable index of the brain's capacity for consciousness in humans under both physiological and pathological conditions. Upon loss of consciousness, the complex pattern of causal interactions observed during wakefulness collapses into a stereotypical slow wave, suggesting that cortical bistability may play a role. Bistability is mainly expressed in the form of slow oscillations, a default pattern of activity that emerges from cortical networks in conditions of functional or anatomical disconnection. Here, we employ an in vitro model to understand the relationship between bistability and complexity in cortical circuits. We adapted the perturbational complexity index applied in humans to electrically stimulated cortical slices under different neuromodulatory conditions. At this microscale level, we demonstrate that perturbational complexity can be effectively modulated by pharmacological reduction of bistability and, albeit to a lesser extent, by enhancement of excitability, providing mechanistic insights into the macroscale measurements performed in humans.


Assuntos
Estado de Consciência/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Algoritmos , Animais , Biofísica , Estimulação Elétrica , Entropia , Furões , Técnicas In Vitro , Análise Espectral
4.
J Neurosci ; 37(45): 10882-10893, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118218

RESUMO

How consciousness (experience) arises from and relates to material brain processes (the "mind-body problem") has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the role of the frontal cortex may further delineate NCCs, (3) advocate the need for general, objective, brain-based measures of the capacity for consciousness that are independent of sensory processing and executive functions, and (4) show how animal studies can reveal population and network phenomena of relevance for understanding mechanisms of consciousness.


Assuntos
Comportamento , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/psicologia , Estado de Consciência , Animais , Comportamento Animal , Humanos , Psicofisiologia
5.
Brain Cogn ; 106: 13-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155161

RESUMO

Neuroimaging and electrophysiological studies provide evidence of hemispheric differences in processing faces and, in particular, emotional expressions. However, the timing of emotion representation in the right and left hemisphere is still unclear. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) was used to explore cortical responsiveness during behavioural tasks requiring processing of either identity or expression of faces. Single-pulse TMS was delivered 100ms after face onset over the medial prefrontal cortex (mPFC) while continuous EEG was recorded using a 60-channel TMS-compatible amplifier; right premotor cortex (rPMC) was also stimulated as control site. The same face stimuli with neutral, happy and fearful expressions were presented in separate blocks and participants were asked to complete either a facial identity or facial emotion matching task. Analyses performed on posterior face specific EEG components revealed that mPFC-TMS reduced the P1-N1 component. In particular, only when an explicit expression processing was required, mPFC-TMS interacted with emotion type in relation to hemispheric side at different timing; the first P1-N1 component was affected in the right hemisphere whereas the later N1-P2 component was modulated in the left hemisphere. These findings support the hypothesis that the frontal cortex exerts an early influence on the occipital cortex during face processing and suggest a different timing of the right and left hemisphere involvement in emotion discrimination.


Assuntos
Eletroencefalografia/métodos , Emoções/fisiologia , Expressão Facial , Reconhecimento Facial/fisiologia , Córtex Motor/fisiologia , Lobo Occipital/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
6.
Bipolar Disord ; 16(8): 809-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25219396

RESUMO

BACKGROUND: It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. METHODS: We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. RESULTS: Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. CONCLUSIONS: Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms.


Assuntos
Transtorno Bipolar/patologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Córtex Pré-Frontal/fisiopatologia , Estimulação Magnética Transcraniana , Adulto , Transtorno Bipolar/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fototerapia , Escalas de Graduação Psiquiátrica , Privação do Sono , Resultado do Tratamento , Adulto Jovem
7.
Cereb Cortex ; 23(2): 332-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22314045

RESUMO

Prolonged wakefulness is associated not only with obvious changes in the way we feel and perform but also with well-known clinical effects, such as increased susceptibility to seizures, to hallucinations, and relief of depressive symptoms. These clinical effects suggest that prolonged wakefulness may be associated with significant changes in the state of cortical circuits. While recent animal experiments have reported a progressive increase of cortical excitability with time awake, no conclusive evidence could be gathered in humans. In this study, we combine transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to monitor cortical excitability in healthy individuals as a function of time awake. We observed that the excitability of the human frontal cortex, measured as the immediate (0-20 ms) EEG reaction to TMS, progressively increases with time awake, from morning to evening and after one night of total sleep deprivation, and that it decreases after recovery sleep. By continuously monitoring vigilance, we also found that this modulation in cortical responsiveness is tonic and not attributable to transient fluctuations of the level of arousal. The present results provide noninvasive electrophysiological evidence that wakefulness is associated with a steady increase in the excitability of human cortical circuits that is rebalanced during sleep.


Assuntos
Córtex Cerebral/fisiologia , Vigília/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Privação do Sono/fisiopatologia , Tempo , Estimulação Magnética Transcraniana
8.
Neuroimage ; 76: 24-32, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23523809

RESUMO

Neuroimaging and electrophysiological studies have shown the involvement of a fronto-temporo-occipital network in face processing, but the functional relation among these areas remains unclear. We used transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to explore the local and global cortical excitability at rest and during two different face processing behavioral tasks. Single-pulse TMS was delivered (100 ms after face stimulus onset) over the right medial prefrontal cortex (mPFC) during a face identity or a face expression matching task, while continuous EEG was recorded using a 60-channel TMS-compatible amplifier. We examined TMS effects on the occipital face-specific ERP component and compared TMS-evoked potentials (TEPs) recorded during task performance and a passive point fixation control task. TMS reduced the P1-N1 component recorded at the occipital electrodes. Moreover, performing face tasks significantly modulated TEPs recorded at the occipital and temporal electrodes within the first 30 ms after right mPFC stimulation, with a specific increase of temporal TEPs in the right hemisphere for the facial expression task. Furthermore, in order to test the site-specificity of the reported effects, TMS was applied over the right premotor cortex (PMC) as a control site using the same experimental paradigm. Results showed that TMS over the right PMC did not affect ERP components in posterior regions during the face tasks and TEP amplitude did not change between task and no task condition, either at fronto-central electrodes near the stimulation or at temporal and occipital electrodes. These findings support the notion that the prefrontal cortex exerts a very early influence over the occipital cortex during face processing tasks and that excitability across right fronto-temporal cortical regions is significantly modulated during explicit facial expression processing.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Vias Neurais/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Eletroencefalografia , Potenciais Evocados , Face , Expressão Facial , Feminino , Humanos , Masculino , Estimulação Luminosa , Estimulação Magnética Transcraniana
9.
Brain ; 135(Pt 4): 1308-20, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22226806

RESUMO

Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Estado de Consciência/fisiologia , Estado Vegetativo Persistente/patologia , Estado Vegetativo Persistente/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Adulto , Idoso , Ondas Encefálicas/fisiologia , Córtex Cerebral/diagnóstico por imagem , Eletroencefalografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Análise Espectral , Tomografia Computadorizada por Raios X , Estimulação Magnética Transcraniana
10.
Brain Sci ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190501

RESUMO

Despite the heavy burden of schizophrenia, research on biomarkers associated with its early course is still ongoing. Single-pulse Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) has revealed that the main oscillatory frequency (or "natural frequency") is reduced in several frontal brain areas, including the premotor cortex, of chronic patients with schizophrenia. However, no study has explored the natural frequency at the beginning of illness. Here, we used TMS-EEG to probe the intrinsic oscillatory properties of the left premotor cortex in early-course schizophrenia patients (<2 years from onset) and age/gender-matched healthy comparison subjects (HCs). State-of-the-art real-time monitoring of EEG responses to TMS and noise-masking procedures were employed to ensure data quality. We found that the natural frequency of the premotor cortex was significantly reduced in early-course schizophrenia compared to HCs. No correlation was found between the natural frequency and age, clinical symptom severity, or dose of antipsychotic medications at the time of TMS-EEG. This finding extends to early-course schizophrenia previous evidence in chronic patients and supports the hypothesis of a deficit in frontal cortical synchronization as a core mechanism underlying this disorder. Future work should further explore the putative role of frontal natural frequencies as early pathophysiological biomarkers for schizophrenia.

11.
J Neurophysiol ; 107(9): 2383-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22323626

RESUMO

The brain's electrical response to transcranial magnetic stimulation (TMS) is known to be influenced by exogenous factors such as the frequency and intensity of stimulation and the orientation and positioning of the stimulating coil. Less understood, however, is the influence of endogenous neural factors, such as global brain state, on the TMS-evoked response (TMS-ER). In the present study, we explored how changes in behavioral state affect the TMS-ER by perturbing the superior parietal lobule (SPL) with single pulses of TMS and measuring consequent differences in the frequency, strength, and spatial spread of TMS-evoked currents during the delay period of a spatial short-term memory task and during a period of passive fixation. Results revealed that task performance increased the overall strength of electrical currents induced by TMS, increased the spatial spread of TMS-evoked activity to distal brain regions, and increased the ability of TMS to reset the phase of ongoing broadband cortical oscillations. By contrast, task performance had little effect on the dominant frequency of the TMS-ER, both locally and at distal brain areas. These findings contribute to a growing body of work using combined TMS and neuroimaging methods to explore task-dependent changes in the functional organization of cortical networks implicated in task performance.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
12.
Neuroimage ; 49(2): 1459-68, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19770048

RESUMO

Transcranial magnetic stimulation (TMS) combined with simultaneous high-density electroencephalography (hd-EEG) represents a straightforward way to gauge cortical excitability and connectivity in humans. However, the analysis, classification and interpretation of TMS-evoked potentials are hampered by scarce a priori knowledge about the physiological effect of TMS and by lack of an established data analysis framework. Here, we implemented a standardized, data-driven procedure to characterize the electrical response of the cerebral cortex to TMS by means of three synthetic indices: significant current density (SCD), phase-locking (PL) and significant current scattering (SCS). SCD sums up the amplitude of all significant currents induced by TMS, PL reflects the ability of TMS to reset the phase of ongoing cortical oscillations, while SCS measures the average distance of significantly activated sources from the site of stimulation. These indices are aimed at capturing different aspects of brain responsiveness, ranging from global cortical excitability towards global cortical connectivity. We analyzed the EEG responses to TMS of Brodmann's area 19 at increasing intensities in five healthy subjects. The spatial distribution and time course of SCD, PL and SCS revealed a reproducible profile of excitability and connectivity, characterized by a local activation threshold around a TMS-induced electric field of 50 V/m and by a selective propagation of TMS-evoked activation from occipital to ipsilateral frontal areas that reached a maximum at 70-100 ms. These general indices may be used to characterize the effects of TMS on any cortical area and to quantitatively evaluate cortical excitability and connectivity in physiological and pathological conditions.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados , Estimulação Magnética Transcraniana/métodos , Adulto , Algoritmos , Automação , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Periodicidade , Fatores de Tempo , Adulto Jovem
13.
Schizophr Res ; 206: 436-439, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30473213

RESUMO

TMS with simultaneous EEG allows assessing the intrinsic oscillatory activity of cortical neurons. We recently showed reduced frontal cortical oscillations in chronic schizophrenia (SCZ). Here we investigated the oscillatory activity of first-episode psychosis (FEP) patients after TMS of a frontal area, the motor cortex. Compared to healthy controls, FEP patients had significantly reduced beta/low gamma oscillations, which were associated to worse clinical symptoms. Altogether, this study demonstrates that TMS/EEG recordings: 1) are feasible in acute, early-course psychotic patients; and 2) reveal intrinsic oscillatory deficits at illness onset, which may help design more effective, early interventions in SCZ.


Assuntos
Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Eletroencefalografia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Humanos , Masculino , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Estimulação Magnética Transcraniana , Adulto Jovem
14.
Brain Stimul ; 12(5): 1280-1289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133480

RESUMO

BACKGROUND: The Perturbational Complexity Index (PCI) was recently introduced to assess the capacity of thalamocortical circuits to engage in complex patterns of causal interactions. While showing high accuracy in detecting consciousness in brain-injured patients, PCI depends on elaborate experimental setups and offline processing, and has restricted applicability to other types of brain signals beyond transcranial magnetic stimulation and high-density EEG (TMS/hd-EEG) recordings. OBJECTIVE: We aim to address these limitations by introducing PCIST, a fast method for estimating perturbational complexity of any given brain response signal. METHODS: PCIST is based on dimensionality reduction and state transitions (ST) quantification of evoked potentials. The index was validated on a large dataset of TMS/hd-EEG recordings obtained from 108 healthy subjects and 108 brain-injured patients, and tested on sparse intracranial recordings (SEEG) of 9 patients undergoing intracranial single-pulse electrical stimulation (SPES) during wakefulness and sleep. RESULTS: When calculated on TMS/hd-EEG potentials, PCIST performed with the same accuracy as the original PCI, while improving on the previous method by being computed in less than a second and requiring a simpler set-up. In SPES/SEEG signals, the index was able to quantify a systematic reduction of intracranial complexity during sleep, confirming the occurrence of state-dependent changes in the effective connectivity of thalamocortical circuits, as originally assessed through TMS/hd-EEG. CONCLUSIONS: PCIST represents a fundamental advancement towards the implementation of a reliable and fast clinical tool for the bedside assessment of consciousness as well as a general measure to explore the neuronal mechanisms of loss/recovery of brain complexity across scales and models.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Eletroencefalografia/métodos , Pesquisa Empírica , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Sono/fisiologia , Fatores de Tempo , Vigília/fisiologia
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(6 Pt 2): 066204, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18643347

RESUMO

We propose a strategy for the detection of temporal irreversibility in stationary time series based on multiple bidimensional tests. The test is helpful to evaluate the displacement of irreversibility toward high dimensions. The test can be used independently of the theoretical functionals actually utilized to check irreversibility. The method was applied to simulated nonlinear signals generated by the delayed Henon map and a two-loop negative feedback model to show how the presence of a delay could produce the displacement of irreversibility toward higher dimensions. The method was applied also to series of a biological variable (i.e., heart period) that is known to be regulated by multiple feedback loops. Simulations and real data support the need of exploring progressively increasing embedding dimensions when assessing temporal irreversibility.

16.
Brain Stimul ; 11(2): 358-365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29162503

RESUMO

BACKGROUND: Previous studies have separately reported impaired functional, structural, and effective connectivity in patients with disorders of consciousness (DOC). The perturbational complexity index (PCI) is a transcranial magnetic stimulation (TMS) derived marker of effective connectivity. The global fractional anisotropy (FA) is a marker of structural integrity. Little is known about how these parameters are related to each other. OBJECTIVE: We aimed at testing the relationship between structural integrity and effective connectivity. METHODS: We assessed 23 patients with severe brain injury more than 4 weeks post-onset, leading to DOC or locked-in syndrome, and 14 healthy subjects. We calculated PCI using repeated single pulse TMS coupled with high-density electroencephalography, and used it as a surrogate of effective connectivity. Structural integrity was measured using the global FA, derived from diffusion weighted imaging. We used linear regression modelling to test our hypothesis, and computed the correlation between PCI and FA in different groups. RESULTS: Global FA could predict 74% of PCI variance in the whole sample and 56% in the patients' group. No other predictors (age, gender, time since onset, behavioural score) improved the models. FA and PCI were correlated in the whole population (r = 0.86, p < 0.0001), the patients, and the healthy subjects subgroups. CONCLUSION: We here demonstrated that effective connectivity correlates with structural integrity in brain-injured patients. Increased structural damage level decreases effective connectivity, which could prevent the emergence of consciousness.


Assuntos
Lesões Encefálicas/fisiopatologia , Conectoma , Transtornos da Consciência/fisiopatologia , Adulto , Idoso de 80 Anos ou mais , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/etiologia , Imagem de Tensor de Difusão , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana
17.
Neuroimage Clin ; 14: 354-362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239544

RESUMO

BACKGROUND: Making an accurate diagnosis in patients with disorders of consciousness remains challenging. 18F-fluorodeoxyglucose (FDG)-PET has been validated as a diagnostic tool in this population, and allows identifying unresponsive patients with a capacity for consciousness. In parallel, the perturbational complexity index (PCI), a new measure based on the analysis of the electroencephalographic response to transcranial magnetic stimulation, has also been suggested as a tool to distinguish between unconscious and conscious states. The aim of the study was to cross-validate FDG-PET and PCI, and to identify signs of consciousness in otherwise unresponsive patients. METHODS: We jointly applied the Coma Recovery Scale-Revised, FDG-PET and PCI to assess 24 patients with non-acute disorders of consciousness or locked-in syndrome (13 male; 19-54 years old; 12 traumatic; 9 unresponsive wakefulness syndrome, 11 minimally conscious state; 2 emergence from the minimally conscious state, and 2 locked-in syndrome). RESULTS: FDG-PET and PCI provided congruent results in 22 patients, regardless of their behavioural diagnosis. Notably, FDG-PET and PCI revealed preserved metabolic rates and high complexity levels in four patients who were behaviourally unresponsive. CONCLUSION: We propose that jointly measuring the metabolic activity and the electrophysiological complexity of cortical circuits is a useful complement to the diagnosis and stratification of patients with disorders of consciousness.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Transtornos da Consciência/patologia , Adulto , Lesões Encefálicas/complicações , Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/etiologia , Eletroencefalografia , Feminino , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Tomografia por Emissão de Pósitrons , Estimulação Magnética Transcraniana , Adulto Jovem
18.
Clin EEG Neurosci ; 45(1): 40-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24403317

RESUMO

We normally assess another individual's level of consciousness based on her or his ability to interact with the surrounding environment and communicate. Usually, if we observe purposeful behavior, appropriate responses to sensory inputs, and, above all, appropriate answers to questions, we can be reasonably sure that the person is conscious. However, we know that consciousness can be entirely within the brain, even in the absence of any interaction with the external world; this happens almost every night, while we dream. Yet, to this day, we lack an objective, dependable measure of the level of consciousness that is independent of processing sensory inputs and producing appropriate motor outputs. Theoretically, consciousness is thought to require the joint presence of functional integration and functional differentiation, otherwise defined as brain complexity. Here we review a series of recent studies in which Transcranial Magnetic Stimulation combined with electroencephalography (TMS/EEG) has been employed to quantify brain complexity in wakefulness and during physiological (sleep), pharmacological (anesthesia) and pathological (brain injury) loss of consciousness. These studies invariably show that the complexity of the cortical response to TMS collapses when consciousness is lost during deep sleep, anesthesia and vegetative state following severe brain injury, while it recovers when consciousness resurges in wakefulness, during dreaming, in the minimally conscious state or locked-in syndrome. The present paper will also focus on how this approach may contribute to unveiling the pathophysiology of disorders of consciousness affecting brain-injured patients. Finally, we will underline some crucial methodological aspects concerning TMS/EEG measurements of brain complexity.


Assuntos
Transtornos da Consciência/fisiopatologia , Estado de Consciência/fisiologia , Eletroencefalografia , Estimulação Magnética Transcraniana , Sonhos/fisiologia , Humanos , Hipnóticos e Sedativos/farmacologia , Midazolam/farmacologia , Recuperação de Função Fisiológica , Sono/fisiologia , Vigília/fisiologia
19.
Sci Transl Med ; 5(198): 198ra105, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946194

RESUMO

One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject's ability to interact with the external environment. Theoretical considerations suggest that consciousness depends on the brain's ability to support complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). We introduce and test a theory-driven index of the level of consciousness called the perturbational complexity index (PCI). PCI is calculated by (i) perturbing the cortex with transcranial magnetic stimulation (TMS) to engage distributed interactions in the brain (integration) and (ii) compressing the spatiotemporal pattern of these electrocortical responses to measure their algorithmic complexity (information). We test PCI on a large data set of TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, nonrapid eye movement sleep, and different levels of sedation induced by anesthetic agents (midazolam, xenon, and propofol), as well as in patients who had emerged from coma (vegetative state, minimally conscious state, and locked-in syndrome). PCI reliably discriminated the level of consciousness in single individuals during wakefulness, sleep, and anesthesia, as well as in patients who had emerged from coma and recovered a minimal level of consciousness. PCI can potentially be used for objective determination of the level of consciousness at the bedside.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Anestésicos/farmacologia , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Feminino , Humanos , Masculino , Midazolam/farmacologia , Propofol/farmacologia , Estimulação Magnética Transcraniana , Xenônio/farmacologia
20.
J Neurosci Methods ; 198(2): 236-45, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21524665

RESUMO

A single pulse of Transcranial Magnetic Stimulation (TMS) generates electroencephalogram (EEG) oscillations that are thought to reflect intrinsic properties of the stimulated cortical area and its fast interactions with other cortical areas. Thus, a tool to decompose TMS-evoked oscillations in the time-frequency domain on a millisecond timescale and on a broadband frequency range may help to understand information transfer across cortical oscillators. Some recent studies have employed algorithms based on the Wavelet Transform (WT) to study TMS-evoked EEG oscillations in healthy and pathological conditions. However, these methods do not allow to describe TMS-evoked EEG oscillations with high resolution in time and frequency domains simultaneously. Here, we first develop an algorithm based on Hilbert-Huang Transform (HHT) to compute statistically significant time-frequency spectra of TMS-evoked EEG oscillations on a single trial basis. Then, we compared the performances of the HHT-based algorithm with the WT-based one by applying both of them to a set of simulated signals. Finally, we applied both algorithms to real TMS-evoked potentials recorded in healthy or schizophrenic subjects. We found that the HHT-based algorithm outperforms the WT-based one in detecting the time onset of TMS-evoked oscillations in the classical EEG bands. These results suggest that the HHT-based algorithm may be used to study the communication between different cortical oscillators on a fine time scale.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Estimulação Magnética Transcraniana , Algoritmos , Humanos , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA