Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(36): 8835-8845, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39188212

RESUMO

Highly scattering samples, such as polymer droplets or solid-state powders, are difficult to study via coherent two-dimensional infrared (2D IR) spectroscopy. Previously, researchers have employed (quasi-) phase cycling, local-oscillator chopping, and polarization control to reduce scattering, but the latter method poses a limit on polarization-dependent measurements. Here, we present a method for Scattering Elimination Immune from Detector Artifacts (SEIFDA) in pump-probe 2D IR experiments. Our method extends the negative probe delay method of removing scattering from pump-probe spectroscopy to 2D experiments. SEIFDA works well for all polarizations when combined with the optimized noise reduction scheme to remove additive and multiplicative noise. We demonstrate that our method can be employed with any polarization scheme and reliably lowers the scattering at parallel polarization to comparable levels to the conventional 8-frame phase cycling with probe chopping (8FPCPC) at perpendicular polarization. Our system can acquire artifact free spectra in parallel polarization when the signal intensity is as little as 5% of the intensity of the interference between the pump pulses scattered into the detector. It reduces the time required to characterize the scattering term by at least 50% over 8FPCPC. Through detailed analysis of detector nonlinearity, we show that the performance of 8FPCPC can be improved by incorporating nonlinear correction factors, but it is still worse than that of SEIFDA. Application of SEIFDA to study the encapsulation of Nile red in polymer droplets demonstrates that this method will be very useful for probing highly scattering systems.

2.
Adv Sci (Weinh) ; 8(23): e2102077, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687166

RESUMO

The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA