RESUMO
A methodology based on micellar liquid chromatography to monitor five antiretroviral drugs (lamivudine, stavudine, tenofovir, zidovudine and efavirenz) was proposed. Antiretrovirals were studied in sets of three, corresponding to each highly active antiretroviral therapy (HAART) regime, prescribed to acquired immunodeficiency syndrome (AIDS)-infected patients. Four aqueous micellar mobile phases buffered at pH 7 were optimized to separate these compounds, using sodium dodecyl sulfate as the tensioactive, and 1-propanol or 1-pentanol as the organic modifier. The composition of each mobile phase was optimized for each antiretroviral. The common separation conditions were: C18 apolar column (125 × 4.6 mm, 5 µm particle size), UV detection set at 214 nm, and mobile phase running at 1 mL min(-1) without controlling the temperature. The finally suggested method was validated for five analysed antiretroviral drugs following the US Food and Drug Administration guidelines in terms of: linearity between 0.5 and 50 ppm (r(2) > 0.9995), sensitivity (LOD lower than 0.25 ppm), intra- and inter-day precision (<7.1 and <5.2%, respectively) and accuracy (recovery 88.5-105.3% and 93.5-101.3%, respectively), as well as robustness (<6.5%). The proposed method was used to monitor the level of antiretrovirals in the serum of AIDS patients. The suggested methodology was found to be useful in the routine analysis of antiretrovirals in serum samples.