Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Cell Environ ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686847

RESUMO

In plants, salicylic acid (SA) hydroxylation regulates SA homoeostasis, playing an essential role during plant development and response to pathogens. This reaction is catalysed by SA hydroxylase enzymes, which hydroxylate SA producing 2,3-dihydroxybenzoic acid (2,3-DHBA) and/or 2,5-dihydroxybenzoic acid (2,5-DHBA). Several SA hydroxylases have recently been identified and characterised from different plant species, but no such activity has yet been reported in maize. In this work, we describe the identification and characterisation of a new SA hydroxylase in maize plants. This enzyme, with high sequence similarity to previously described SA hydroxylases from Arabidopsis and rice, converts SA into 2,5-DHBA; however, it has different kinetic properties to those of previously characterised enzymes, and it also catalysers the conversion of the flavonoid dihydroquercetin into quercetin in in vitro activity assays, suggesting that the maize enzyme may have different roles in vivo to those previously reported from other species. Despite this, ZmS5H can complement the pathogen resistance and the early senescence phenotypes of Arabidopsis s3h mutant plants. Finally, we characterised a maize mutant in the S5H gene (s5hMu) that has altered growth, senescence and increased resistance against Colletotrichum graminicola infection, showing not only alterations in SA and 2,5-DHBA but also in flavonol levels. Together, the results presented here provide evidence that SA hydroxylases in different plant species have evolved to show differences in catalytic properties that may be important to fine tune SA levels and other phenolic compounds such as flavonols, to regulate different aspects of plant development and pathogen defence.

2.
Plant J ; 109(5): 1098-1115, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859915

RESUMO

Ultraviolet (UV)B radiation affects plant growth inhibiting cell proliferation. This inhibition is in part controlled by the activity of transcription factors from the E2F family. In particular, the participation of E2Fc and E2Fe in UV-B responses in Arabidopsis plants was previously reported. However, the E2Fa and E2Fb contribution to these processes has still not been investigated. Thus, in this work, we provide evidence that, in Arabidopsis, both E2Fa and E2Fb control leaf size under UV-B conditions without participating in the repair of cyclobutane pyrimidine dimers in the DNA. Nevertheless, in UV-B-exposed seedlings, E2Fa, but not E2Fb, regulates primary root elongation, cell proliferation, and programmed cell death in the meristematic zone. Using e2fa mutants that overexpress E2Fb, we showed that the role of E2Fa in the roots could not be replaced by E2Fb. Finally, our results show that E2Fa and E2Fb differentially regulate the expression of genes that activate the DNA damage response and cell cycle progression, both under conditions without UV-B and after exposure. Overall, we showed that both E2Fa and E2Fb have different and non-redundant roles in developmental and DNA damage responses in Arabidopsis plants exposed to UV-B.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta/efeitos adversos
3.
Plant J ; 110(4): 1047-1067, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220621

RESUMO

Mediator 17 (MED17) is a subunit of the Mediator complex that regulates transcription initiation in eukaryotic organisms. In yeast and humans, MED17 also participates in DNA repair, physically interacting with proteins of the nucleotide excision DNA repair system, but this function in plants has not been investigated. We studied the role of MED17 in Arabidopsis plants exposed to UV-B radiation. Our results demonstrate that med17 and OE MED17 plants have altered responses to UV-B, and that MED17 participates in various aspects of the DNA damage response (DDR). Comparison of the med17 transcriptome with that of wild-type (WT) plants showed that almost one-third of transcripts with altered expression in med17 plants were also changed by UV-B exposure in WT plants. Increased sensitivity to DNA damage after UV-B in med17 plants could result from the altered regulation of UV-B responsive transcripts but MED17 also physically interacts with DNA repair proteins, suggesting a direct role of this Mediator subunit during repair. Finally, we show that MED17 is necessary to regulate the DDR activated by ataxia telangiectasia and Rad3 related (ATR), and that programmed cell death 5 (PDCD5) overexpression reverts the deficiencies in DDR shown in med17 mutants. Our data demonstrate that MED17 is an important regulator of DDR after UV-B irradiation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Reparo do DNA/genética , Raios Ultravioleta
4.
J Exp Bot ; 72(11): 4119-4131, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206978

RESUMO

The genome of plants is organized into chromatin. The chromatin structure regulates the rates of DNA metabolic processes such as replication, transcription, DNA recombination, and repair. Different aspects of plant growth and development are regulated by changes in chromatin status by the action of chromatin-remodeling activities. Recent data have also shown that many of these chromatin-associated proteins participate in different aspects of the DNA damage response, regulating DNA damage and repair, cell cycle progression, programmed cell death, and entry into the endocycle. In this review, we present different examples of proteins and chromatin-modifying enzymes with roles during DNA damage responses, demonstrating that rapid changes in chromatin structure are essential to maintain genome stability.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Cromatina/genética , Dano ao DNA , Reparo do DNA , Histonas/metabolismo
5.
Physiol Plant ; 173(3): 736-749, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34453749

RESUMO

Flavonoids are plant specialized metabolites that consist of one oxygenated and two aromatic rings. Different flavonoids are grouped according to the oxidation degree of the carbon rings; they can later be modified by glycosylations, hydroxylations, acylations, methylations, or prenylations. These modifications generate a wide collection of different molecules which have various functions in plants. All flavonoids absorb in the UV wavelengths, they mostly accumulate in the epidermis of plant cells and their biosynthesis is generally activated after UV exposure. Therefore, they have been assumed to protect plants against exposure to radiation in this range. Some flavonoids also absorb in other wavelengths, for example anthocyanins, which absorb light in the visible part of the solar spectrum. Besides, some flavonoids show antioxidant properties, that is, they act as scavengers of reactive oxygen species that could be produced after high fluence UV exposure. However, to date most reports were based on in vitro studies, and there is very little in vivo evidence of how their roles are carried out. In this review we first summarize the biosynthetic pathway of flavonoids and their characteristics, and we describe recent advances on the investigation of the role of three of the most abundant flavonoids: flavonols, flavones, and anthocyanins, protecting plants against UV exposure and high light exposure. We also present examples of how using UV-B supplementation to increase flavonoid content, is possible to improve plant nutritional and pharmaceutical values.


Assuntos
Antocianinas , Flavonoides , Antioxidantes , Plantas , Luz Solar , Raios Ultravioleta
6.
Plant J ; 97(4): 749-764, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30427087

RESUMO

UV-B radiation inhibits plant growth, and this inhibition is, to a certain extent, regulated by miR396-mediated repression of Growth Regulating Transcription factors (GRFs). Moreover, E2Fe transcription factor also modulates Arabidopsis leaf growth. Here, we provide evidence that, at UV-B intensities that induce DNA damage, E2Fc participates in the inhibition of cell proliferation. We demonstrate that E2Fc-deficient plants show a lower inhibition of leaf size under UV-B conditions that damage DNA, decreased cell death after exposure and altered SOG1 and ATR expression. Interestingly, the previously reported participation of E2Fe in UV-B responses, which is a transcriptional target of E2Fc, is independent and different from that described for E2Fc. Conversely, we here demonstrate that E2Fc has an epistatic role over the miR396 pathway under UV-B conditions. Finally, we show that inhibition of cell proliferation by UV-B is independent of the regulation of class II TCP transcription factors. Together, our results demonstrate that E2Fc is required for miR396 activity on cell proliferation under UV-B, and that its role is independent of E2Fe, probably modulating DNA damage responses through the regulation of SOG1 and ATR transcript levels.


Assuntos
Proteínas E2 de Adenovirus/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dano ao DNA/efeitos da radiação , Raios Ultravioleta , Proteínas E2 de Adenovirus/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Dano ao DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
7.
Plant J ; 96(6): 1178-1190, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30238536

RESUMO

Pattern recognition receptors (PRR) and nucleotide-binding leucine-rich repeat proteins (NLR) are major components of the plant immune system responsible for pathogen detection. To date, the transcriptional regulation of PRR/NLR genes is poorly understood. Some PRR/NLR genes are affected by epigenetic changes of neighboring transposable elements (TEs) (cis regulation). We analyzed whether these genes can also respond to changes in the epigenetic marks of distal pericentromeric TEs (trans regulation). We found that Arabidopsis tissues infected with Pseudomonas syringae pv. tomato (Pst) initially induced the expression of pericentromeric TEs, and then repressed it by RNA-directed DNA methylation (RdDM). The latter response was accompanied by the accumulation of small RNAs (sRNAs) mapping to the TEs. Curiously these sRNAs also mapped to distal PRR/NLR genes, which were controlled by RdDM but remained induced in the infected tissues. Then, we used non-infected mom1 (Morpheus' molecule 1) mutants that expressed pericentromeric TEs to test if they lose repression of PRR/NLR genes. mom1 plants activated several PRR/NLR genes that were unlinked to MOM1-targeted TEs, and showed enhanced resistance to Pst. Remarkably, the increased defenses of mom1 were abolished when MOM1/RdDM-mediated pericentromeric TEs silencing was re-established. Therefore, common sRNAs could control PRR/NLR genes and distal pericentromeric TEs and preferentially silence TEs when they are activated.


Assuntos
Arabidopsis/imunologia , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Genes de Plantas/genética , Imunidade Vegetal/genética , Arabidopsis/genética , Centrômero/genética , Metilação de DNA/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae
8.
Plant Cell Environ ; 42(9): 2730-2745, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145828

RESUMO

Chromatin assembly factor-1 (CAF-1) is a histone H3/H4 chaperone that participates in DNA and chromatin interaction processes. In this manuscript, we show that organs from CAF-1 deficient plants respond differently to ultraviolet-B (UV-B) radiation than to other genotoxic stresses. For example, CAF-1 deficient leaves tolerate better UV-B radiation, showing lower cyclobutane pyrimidine dimer (CPD) accumulation, lower inhibition of cell proliferation, increased cell wall thickness, UV-B absorbing compounds, and ploidy levels, whereas previous data from different groups have shown that CAF-1 mutants show shortening of telomeres, loss of 45S rDNA, and increased homologous recombination, phenotypes associated to DNA breaks. Interestingly, CAF-1 deficient roots show increased inhibition of primary root elongation, with decreased meristem size due to a higher inhibition of cell proliferation after UV-B exposure. The decrease in root meristem size in CAF-1 mutants is a consequence of defects in programmed cell death after UV-B exposure. Together, we provide evidence demonstrating that root and shoot meristematic cells may have distinct protection mechanisms against CPD accumulation by UV-B, which may be linked with different functions of the CAF-1 complex in these different organs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos da radiação , Dano ao DNA , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos da radiação , Fatores de Processamento de RNA/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proliferação de Células , Parede Celular/metabolismo , Endorreduplicação , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raios Ultravioleta
9.
Plant Cell Environ ; 42(2): 495-508, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30160312

RESUMO

Flavones, one of the largest groups of flavonoids, have beneficial effects on human health and are considered of high nutritional value. Previously, we demonstrated that maize type I flavone synthase (ZmFNSI) is one of the enzymes responsible for the synthesis of O-glycosyl flavones in floral tissues. However, in related species such as rice and sorghum, type II FNS enzymes also contribute to flavone biosynthesis. In this work, we provide evidence that maize has both one FNSI and one FNSII flavone synthases. Arabidopsis transgenic plants expressing each FNS enzyme were generated to validate the role of flavones in protecting plants against UV-B radiation. Here, we demostrate that ZmCYP93G7 (FNSII) has flavone synthase activity and is able to complement the Arabidopsis dmr6 mutant, restoring the susceptibility to Pseudomonas syringae. ZmFNSII expression is controlled by the C1/PL1 + R/B anthocyanin transcriptional complexes, and both ZmFNSI and ZmFNSII are regulated by UV-B. Arabidopsis transgenic plants expressing ZmFNSI or ZmFNSII that accumulate apigenin exhibit less UV-B-induced damage than wild-type plants. Together, we show that maize has two FNS-type enzymes that participate in the synthesis of apigenin, conferring protection against UV-B radiation.


Assuntos
Apigenina/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/fisiologia , Raios Ultravioleta/efeitos adversos , Zea mays/metabolismo , Apigenina/metabolismo , Arabidopsis/metabolismo , Dano ao DNA/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Zea mays/enzimologia , Zea mays/efeitos da radiação
10.
Plant Cell ; 28(6): 1297-309, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27221383

RESUMO

The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous genetic analyses predicted Pericarp Color1 (P1; R2R3-MYB transcription factor) to be epistatic to the sm mutation. Subsequent studies identified two loci as being capable of conferring salmon silks phenotypes, salmon silks1 (sm1) and sm2 Benefitting from available sm1 and sm2 mapping information and from knowledge of the genes regulated by P1, we describe here the molecular identification of the Sm1 and Sm2 gene products. Sm2 encodes a rhamnosyl transferase (UGT91L1) that uses isoorientin and UDP-rhamnose as substrates and converts them to rhamnosylisoorientin. Sm1 encodes a multidomain UDP-rhamnose synthase (RHS1) that converts UDP-glucose into UDP-l-rhamnose. Here, we demonstrate that RHS1 shows unexpected substrate plasticity in converting the glucose moiety in rhamnosylisoorientin to 4-keto-6-deoxy glucose, resulting in maysin. Both Sm1 and Sm2 are direct targets of P1, as demonstrated by chromatin immunoprecipitation experiments. The molecular characterization of Sm1 and Sm2 described here completes the maysin biosynthetic pathway, providing powerful tools for engineering tolerance to maize earworm in maize and other plants.


Assuntos
Flavonoides/biossíntese , Flavonoides/metabolismo , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Imunoprecipitação da Cromatina , Luteolina/metabolismo , Fenótipo , Proteínas de Plantas/genética , Açúcares de Uridina Difosfato/metabolismo , Zea mays/genética
11.
Plant Physiol ; 174(2): 1110-1126, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400494

RESUMO

Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family.


Assuntos
Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos da radiação , Fenômenos Biomecânicos , Divisão Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Transcriptoma/genética , Zea mays/genética
12.
Plant Cell Environ ; 41(6): 1394-1406, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29447428

RESUMO

UV-B is a high-energy component of the solar radiation perceived by the plant and induces a number of modifications in plant growth and development, including changes in flowering time. However, the molecular mechanisms underlying these changes are largely unknown. In the present work, we demonstrate that Arabidopsis plants grown under white light supplemented with UV-B show a delay in flowering time, and this developmental reprogramming is mediated by the UVR8 photoreceptor. Using a combination of gene expression analyses and UV-B irradiation of different flowering mutants, we gained insight into the pathways involved in the observed flowering time delay in UV-B-exposed Arabidopsis plants. We provide evidence that UV-B light downregulates the expression of MSI1 and CLF, two of the components of the polycomb repressive complex 2, which in consequence drives a decrease in H3K27me3 histone methylation of MIR156 and FLC genes. Modification in the expression of several flowering time genes as a consequence of the decrease in the polycomb repressive complex 2 activity was also determined. UV-B exposure of flowering mutants supports the involvement of this complex in the observed delay in flowering time, mostly through the age pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Flores/fisiologia , Flores/efeitos da radiação , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Raios Ultravioleta , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação para Baixo/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Histonas/metabolismo , Lisina/metabolismo , Metilação , MicroRNAs/genética , Mutação/genética , Complexo Repressor Polycomb 2 , Fatores de Tempo
13.
J Exp Bot ; 69(20): 4921-4933, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29945243

RESUMO

Plastidial isoprenoids, such as carotenoids and tocopherols, are important anti-oxidant metabolites synthesized in plastids from precursors generated by the methylerythritol 4-phosphate (MEP) pathway. In this study, we found that irradiation of Arabidopsis thaliana plants with UV-B caused a strong increase in the accumulation of the photoprotective xanthophyll zeaxanthin but also resulted in slightly higher levels of γ-tocopherol. Plants deficient in the MEP enzymes 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase showed a general reduction in both carotenoids and tocopherols and this was associated with increased DNA damage and decreased photosynthesis after exposure to UV-B. Genetic blockage of tocopherol biosynthesis did not affect DNA damage accumulation. In contrast, lut2 mutants that accumulate ß,ß-xanthophylls showed decreased DNA damage when irradiated with UV-B. Analysis of aba2 mutants showed that UV-B protection was not mediated by ABA (a hormone derived from ß,ß-xanthophylls). Plants accumulating ß,ß-xanthophylls also showed decreased oxidative damage and increased expression of DNA-repair enzymes, suggesting that this may be a mechanism for these plants to decrease DNA damage. In addition, in vitro experiments also provided evidence that ß,ß-xanthophylls can directly protect against DNA damage by absorbing radiation. Together, our results suggest that xanthophyll-cycle carotenoids that protect against excess illumination may also contribute to protection against UV-B.


Assuntos
Arabidopsis/metabolismo , Raios Ultravioleta , Xantofilas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Eritritol/análogos & derivados , Eritritol/deficiência , Fotossíntese/efeitos da radiação , Fosfatos Açúcares/deficiência
14.
Plant Physiol ; 170(4): 2444-60, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26884483

RESUMO

DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs.


Assuntos
Apoptose , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Reparo do DNA , Raízes de Plantas/fisiologia , Plântula/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Dano ao DNA , DNA de Plantas/genética , Expressão Gênica , Genes Reporter , Humanos , Mutação , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , Transporte Proteico , Plântula/citologia , Plântula/genética , Plântula/efeitos da radiação , Raios Ultravioleta
15.
Plant Physiol ; 169(2): 1090-107, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269546

RESUMO

Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble Fe(2+)/2-oxoglutarate-dependent dioxygenases, and FNSII enzymes are oxygen- and NADPH-dependent cytochrome P450 membrane-bound monooxygenases. Here, we describe the identification and characterization of FNSI enzymes from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). In maize, ZmFNSI-1 is expressed at significantly higher levels in silks and pericarps expressing the 3-deoxy flavonoid R2R3-MYB regulator P1, suggesting that ZmFNSI-1 could be the main enzyme for the synthesis of flavone O-glycosides. We also show here that DOWNY MILDEW RESISTANT6 (AtDMR6), the Arabidopsis homologous enzyme to ZmFNSI-1, has FNSI activity. While dmr6 mutants show loss of susceptibility to Pseudomonas syringae, transgenic dmr6 plants expressing ZmFNSI-1 show similar susceptibility to wild-type plants, demonstrating that ZmFNSI-1 can complement the mutant phenotype. AtDMR6 expression analysis showed a tissue- and developmental stage-dependent pattern, with high expression in cauline and senescing leaves. Finally, we show that Arabidopsis cauline and senescing leaves accumulate apigenin, demonstrating that Arabidopsis plants have an FNSI activity involved in the biosynthesis of flavones. The results presented here also suggest cross talk between the flavone and salicylic acid pathways in Arabidopsis; in this way, pathogens would induce flavones to decrease salicylic acid and, hence, increase susceptibility.


Assuntos
Arabidopsis/metabolismo , Flavonas/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Apigenina/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Mutação , Filogenia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Zea mays/genética
16.
Plant Cell Environ ; 39(1): 174-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26147461

RESUMO

In maize (Zea mays), as well as in other crops, transposable elements (TEs) constitute a great proportion of the genome. Chromatin modifications play a vital role in establishing transposon silencing and perpetuating the acquired repressive state. Nucleosomes associated with TEs are enriched for dimethylation of histone H3 at lysine 9 and 27 (H3K9me2 and H3K27me2, respectively), signals of repressive chromatin. Here, we describe a chromatin protein, ZmMBD101, involved in the regulation of Mutator (Mu) genes in maize. ZmMBD101 is localized to the nucleus and contains a methyl-CpG-binding domain (MBD) and a zinc finger CW (CW) domain. Transgenic lines with reduced levels of ZmMBD101 transcript present enhanced induction of Mu genes when plants are irradiated with UV-B. Chromatin immunoprecipitation analysis with H3K9me2 and H3K27me2 antibodies indicated that ZmMBD101 is required to maintain the levels of these histone repressive marks at Mu terminal inverted repeats (TIRs) under UV-B conditions. Although Mutator inactivity is associated with DNA methylation, cytosine methylation at Mu TIRs is not affected in ZmMBD101 deficient plants. Several plant proteins are predicted to share the simple CW-MBD domain architecture present in ZmMBD101. We hypothesize that plant CW-MBD proteins may also function to protect plant genomes from deleterious transposition.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Núcleo Celular/metabolismo , Cromatina/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Histonas/genética , Histonas/metabolismo , Mutação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão , Raios Ultravioleta , Zea mays/citologia , Zea mays/metabolismo , Zea mays/efeitos da radiação
17.
Plant Cell ; 25(9): 3570-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24076976

RESUMO

Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of Growth-Regulating Factors (GRFs) and of microRNA miR396 in UV-B-mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3-related and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Divisão Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , MicroRNAs/metabolismo , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Raios Ultravioleta
18.
Plant Cell Physiol ; 56(7): 1388-400, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25907565

RESUMO

Histone acetylation is regulated by histone acetyltransferases and deacetylases. In Arabidopsis, there are 12 histone acetyltransferases and 18 deacetylases. Histone acetyltransferases are organized in four families: the GNAT/HAG, the MYST, the p300/CBP and the TAFII250 families. Previously, we demonstrated that Arabidopsis mutants in the two members of the MYST acetyltransferase family show increased DNA damage after UV-B irradiation. To investigate further the role of other histone acetyltransferases in UV-B responses, a putative role for enzymes of the GNAT family, HAG1, HAG2 and HAG3, was analyzed. HAG transcripts are not UV-B regulated; however, hag3 RNA interference (RNAi) transgenic plants show a lower inhibition of leaf and root growth by UV-B, higher levels of UV-B-absorbing compounds and less UV-B-induced DNA damage than Wassilewskija (Ws) plants, while hag1 RNAi transgenic plants and hag2 mutants do not show significant differences from wild-type plants. Transcripts for UV-B-regulated genes are highly expressed under control conditions in the absence of UV-B in hag3 RNAi transgenic plants, suggesting that the higher UV-B tolerance may be due to increased levels of proteins that participate in UV-B responses. Together, our data provide evidence that HAG3, directly or indirectly, participates in UV-B-induced DNA damage repair and signaling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Enzimas Reparadoras do DNA/genética , Histona Acetiltransferases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Histona Acetiltransferases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia de Interferência , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Protetores Solares/metabolismo , Raios Ultravioleta
19.
J Exp Bot ; 66(11): 3019-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25465032

RESUMO

The mismatch repair (MMR) system maintains genome integrity by correcting replication-associated errors and inhibiting recombination between divergent DNA sequences. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in this DNA repair system vary among organisms. Plants have an extra mismatch recognition protein, MutSγ, which is a heterodimer: MSH2-MSH7. To further understand the role of MSH7 in vivo, we present data from this protein in Arabidopsis thaliana. First, we generated transgenic plants that express ß-glucuronidase (GUS) under the control of the MSH7 promoter. Histochemical staining of the transgenic plants indicated that MSH7 is preferentially expressed in proliferating tissues. Then, we identified msh7 T-DNA insertion mutants. Plants deficient in MSH7 show increased levels of UV-B-induced cyclobutane pyrimidine dimers relative to wild-type (WT) plants. Consistent with the patterns of MSH7 expression, we next analysed the role of the protein during somatic and meiotic recombination. The frequency of somatic recombination between homologous or homeologous repeats (divergence level of 1.6%) was monitored using a previously described GUS recombination reporter assay. Disruption of MSH7 has no effect on the rates of somatic homologous or homeologous recombination under control conditions or after UV-B exposure. However, the rate of meiotic recombination between two genetically linked seed-specific fluorescent markers was 97% higher in msh7 than in WT plants. Taken together, these results suggest that MSH7 is involved in UV-B-induced DNA damage recognition and in controlling meiotic recombination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reparo do DNA/genética , Recombinação Genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Dano ao DNA/efeitos da radiação , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Genes Reporter , Mutagênese Insercional , Plantas Geneticamente Modificadas , Dímeros de Pirimidina/efeitos da radiação , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Sementes/genética , Sementes/fisiologia , Sementes/efeitos da radiação , Raios Ultravioleta
20.
Plant Cell ; 24(7): 2745-64, 2012 07.
Artigo em Inglês | MEDLINE | ID: mdl-22822204

RESUMO

Pericarp Color1 (P1) encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize (Zea mays) silks and red phlobaphene pigments in pericarps and other floral tissues, which makes P1 an important visual marker. Using genome-wide expression analyses (RNA sequencing) in pericarps and silks of plants with contrasting P1 alleles combined with chromatin immunoprecipitation coupled with high-throughput sequencing, we show here that the regulatory functions of P1 are much broader than the activation of genes corresponding to enzymes in a branch of flavonoid biosynthesis. P1 modulates the expression of several thousand genes, and ∼1500 of them were identified as putative direct targets of P1. Among them, we identified F2H1, corresponding to a P450 enzyme that converts naringenin into 2-hydroxynaringenin, a key branch point in the P1-controlled pathway and the first step in the formation of insecticidal C-glycosyl flavones. Unexpectedly, the binding of P1 to gene regulatory regions can result in both gene activation and repression. Our results indicate that P1 is the major regulator for a set of genes involved in flavonoid biosynthesis and a minor modulator of the expression of a much larger gene set that includes genes involved in primary metabolism and production of other specialized compounds.


Assuntos
Flavonoides/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Fatores de Transcrição/genética , Zea mays/genética , Alelos , Sequência de Bases , Análise por Conglomerados , Flavanonas/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propanóis/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Ativação Transcricional , Zea mays/química , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA