Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Med Virol ; 96(4): e29600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591240

RESUMO

The lower respiratory system serves as the target and barrier for beta-coronavirus (beta-CoV) infections. In this study, we explored beta-CoV infection dynamics in human bronchial epithelial (HBE) organoids, focusing on HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2. Utilizing advanced organoid culture techniques, we observed robust replication for all beta-CoVs, particularly noting that SARS-CoV-2 reached peak viral RNA levels at 72 h postinfection. Through comprehensive transcriptomic analysis, we identified significant shifts in cell population dynamics, marked by an increase in goblet cells and a concurrent decrease in ciliated cells. Furthermore, our cell tropism analysis unveiled distinct preferences in viral targeting: HCoV-OC43 predominantly infected club cells, while SARS-CoV had a dual tropism for goblet and ciliated cells. In contrast, SARS-CoV-2 primarily infected ciliated cells, and MERS-CoV showed a marked affinity for goblet cells. Host factor analysis revealed the upregulation of genes encoding viral receptors and proteases. Notably, HCoV-OC43 induced the unfolded protein response pathway, which may facilitate viral replication. Our study also reveals a complex interplay between inflammatory pathways and the suppression of interferon responses during beta-CoV infections. These findings provide insights into host-virus interactions and antiviral defense mechanisms, contributing to our understanding of beta-CoV infections in the respiratory tract.


Assuntos
Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Linhagem Celular , Brônquios , SARS-CoV-2 , Interferons , Organoides
2.
J Virol ; 96(6): e0187321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107382

RESUMO

Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Modelos Animais de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
3.
One Health ; 18: 100719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585666

RESUMO

The winter of 2020-2021 in South Korea witnessed severe outbreaks of Highly Pathogenic Avian Influenza (HPAI) viruses, specifically multiple genotypes of the H5N8 subtype. These outbreaks prompted an extensive investigation into the genetic characteristics and evolutionary dynamics of these viruses. Under the auspices of the National Institute of Wildlife Disease Control and Prevention (NIWDC), we conducted a nationwide surveillance program, collecting 7588 specimens from diverse wild bird habitats. Influenza A viruses were isolated at a rate of 5.0%, with HPAI H5N8 viruses accounting for 38.5% of isolates, predominantly found in wild bird carcasses (97.3%). Genetic analysis revealed the emergence of novel HPAI genotypes due to genetic reassortment events. G1 and G2 viruses were separately introduced into Korea, with G1 viruses displaying dynamic behavior, resulting in diverse sub-genotypes (G1-1 to G1-5) and mainly isolated from clinical specimens. Conversely, the G2 virus, introduced later, became the dominant strain consistently isolated mainly from bird carcasses (88.9%). These findings underscore the emergence of numerous novel HPAI genotypes shaped by multiple reassortment events in high-density wintering grounds of migratory birds. These sites act as hotspots for genetic exchanges, significantly influencing avian ecology, including resident bird species, and contributing to HPAI H5N8 evolution. The genetic diversity and ongoing evolution of these viruses highlight the need for vigilant surveillance and adaptive control measures. Recognizing the potential spillover to human populations, a One Health approach is essential to mitigate the evolving threats posed by avian influenza.

4.
Emerg Microbes Infect ; 13(1): 2302854, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189114

RESUMO

During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Hemaglutininas , Virulência , Furões , Galinhas
5.
Cell Rep ; 42(9): 113077, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676771

RESUMO

With the emergence of multiple predominant SARS-CoV-2 variants, it becomes important to have a comprehensive assessment of their viral fitness and transmissibility. Here, we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmissibility. Specifically, SARS-CoV-2 variants containing the NSP12 mutations P323L or P323L/G671S exhibit enhanced RNA-dependent RNA polymerase (RdRp) activity at 33°C compared with 37°C and high transmissibility. Molecular dynamics simulations and microscale thermophoresis demonstrate that the NSP12 P323L and P323L/G671S mutations stabilize the NSP12-NSP7-NSP8 complex through hydrophobic effects, leading to increased viral RdRp activity. Furthermore, competitive transmissibility assay reveals that reverse genetic (RG)-P323L or RG-P323L/G671S NSP12 outcompetes RG-WT (wild-type) NSP12 for replication in the upper respiratory tract, allowing markedly rapid transmissibility. This suggests that NSP12 P323L or P323L/G671S mutation of SARS-CoV-2 is associated with increased RdRp complex stability and enzymatic activity, promoting efficient transmissibility.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Furões , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , Mutação/genética , Replicação Viral/genética
6.
J Microbiol ; 60(3): 255-267, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235177

RESUMO

As of February 2022, SARS-CoV-2 is still one of the most serious public health threats due to its high mortality rate and rapid spread of novel variants. Since the first outbreak in 2019, general understanding of SARS-CoV-2 has been improved through basic and clinical studies; however, knowledge gaps still exist in our understanding of the emerging novel SARSCoV-2 variants, which impacts the corresponding development of vaccines and therapeutics. Especially, accumulation of mutations in SARS-CoV-2 and rapid spread in populations with previous immunity has resulted in selection of variants that evade the host immune response. This phenomenon threatens to render current SARS-CoV-2 vaccines ineffective for controlling the pandemic. Proper animal models are essential for detailed investigations into the viral etiology, transmission and pathogenesis mechanisms, as well as evaluation of the efficacy of vaccine candidates against recent SARS-CoV-2 variants. Further, the choice of animal model for each research topic is important for researchers to gain better knowledge of recent SARS-CoV-2 variants. Here, we review the advantages and limitations of each animal model, including mice, hamsters, ferrets, and non-human primates, to elucidate variant SARS-CoV-2 etiology and transmission and to evaluate therapeutic and vaccine efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacinas contra COVID-19 , Modelos Animais de Doenças , Furões , Humanos , Camundongos , SARS-CoV-2/genética , Virulência
7.
Antiviral Res ; 204: 105371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777669

RESUMO

Although several vaccines and antiviral drugs against SARS-CoV-2 are currently available, control and prevention of COVID-19 through these interventions is limited due to inaccessibility and economic issues in some regions and countries. Moreover, incomplete viral clearance by ineffective therapeutics may lead to rapid genetic evolution, resulting in the emergence of new SARS-CoV-2 variants that may escape the host immune system as well as currently available COVID-19 vaccines. Here, we report that phytochemicals extracted from Chlorella spp. and Psidium guajava possess broad-spectrum antiviral activity against a range of SARS-CoV-2 variants. Through chromatography-based screening, we identified four bioactive compounds and subsequently demonstrated their potential antiviral activities in vivo. Interestingly, in hACE2 mice, treatment with these compounds significantly attenuates SARS-CoV-2-induced proinflammatory responses, demonstrating their potential anti-inflammatory activity. Collectively, our study suggests that phytochemicals from edible plants may be readily available therapeutics and prophylactics against multiple SARS-CoV-2 strains and variants.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Chlorella , Animais , Antivirais/uso terapêutico , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Compostos Fitoquímicos/farmacologia , SARS-CoV-2
8.
Nat Commun ; 13(1): 21, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013229

RESUMO

While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Eliminação de Partículas Virais/imunologia , Fatores Etários , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/genética , COVID-19/transmissão , Chlorocebus aethiops , Feminino , Furões , Perfilação da Expressão Gênica/métodos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Células Vero , Virulência
9.
bioRxiv ; 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36203545

RESUMO

With the convergent global emergence of SARS-CoV-2 variants of concern (VOC), a precise comparison study of viral fitness and transmission characteristics is necessary for the prediction of dominant VOCs and the development of suitable countermeasures. While airway temperature plays important roles in the fitness and transmissibility of respiratory tract viruses, it has not been well studied with SARS-CoV-2. Here we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmission. Specifically, SARS-COV-2 variants containing the P323L or P323L/G671S mutation in the NSP12 RNA-dependent RNA polymerase (RdRp) exhibited enhanced RdRp enzymatic activity at 33°C compared to 37°C and high transmissibility in ferrets. MicroScale Thermophoresis demonstrated that the NSP12 P323L or P323L/G671S mutation stabilized the NSP12-NSP7-NSP8 complex interaction. Furthermore, reverse genetics-derived SARS-CoV-2 variants containing the NSP12 P323L or P323L/G671S mutation displayed enhanced replication at 33°C, and high transmission in ferrets. This suggests that the evolutionarily forced NSP12 P323L and P323L/G671S mutations of recent SARS-CoV-2 VOC strains are associated with increases of the RdRp complex stability and enzymatic activity, promoting the high transmissibility.

10.
Immune Netw ; 21(2): e12, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33996168

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the emergence of SARS-CoV-2 in the human population in late 2019, it has spread on an unprecedented scale worldwide leading to the first coronavirus pandemic. SARS-CoV-2 infection results in a wide range of clinical manifestations from asymptomatic to fatal cases. Although intensive research has been undertaken to increase understanding of the complex biology of SARS-CoV-2 infection, the detailed mechanisms underpinning the severe pathogenesis and interactions between the virus and the host immune response are not well understood. Thus, the development of appropriate animal models that recapitulate human clinical manifestations and immune responses against SARS-CoV-2 is crucial. Although many animal models are currently available for the study of SARS-CoV-2 infection, each has distinct advantages and disadvantages, and some models show variable results between and within species. Thus, we aim to discuss the different animal models, including mice, hamsters, ferrets, and non-human primates, employed for SARS-CoV-2 infection studies and outline their individual strengths and limitations for use in studies aimed at increasing understanding of coronavirus pathogenesis. Moreover, a significant advantage of these animal models is that they can be tailored, providing unique options specific to the scientific goals of each researcher.

11.
bioRxiv ; 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33532767

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori -bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.

12.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653891

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the CoV disease 2019 (COVID-19) pandemic, enters host cells via the interaction of its receptor-binding domain (RBD) of the spike protein with host angiotensin-converting enzyme 2 (ACE2). Therefore, the RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of an RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling Helicobacter pylori-bullfrog ferritin nanoparticles as an antigen delivery system. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. Sixteen- to 20-month-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss, or clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious virus in nasal washes and lungs as well as of viral RNA in respiratory organs. This study demonstrates that spike RBD-nanoparticles are an effective protein vaccine candidate against SARS-CoV-2.


Assuntos
COVID-19/prevenção & controle , Nanopartículas/química , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais/uso terapêutico , Enzima de Conversão de Angiotensina 2/química , Animais , Celulose/química , Coronavirus/imunologia , Coronavirus/patogenicidade , Furões , Ferritinas , SARS-CoV-2/imunologia , Vacinas Virais/química
13.
Emerg Microbes Infect ; 10(1): 565-577, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33666526

RESUMO

ABSTRACTSeveral subtypes of avian influenza (AI) viruses have caused human infections in recent years; however, there is a severe knowledge gap regarding the capacity of wild bird viruses to infect mammals. To assess the risk of mammalian infection by AI viruses from their natural reservoirs, a panel of isolates from 34 wild birds was examined in animal models. All selected AI virus subtypes were found to predominantly possess Eurasian lineage, although reassortment with North American lineage AI viruses was also noted in some isolates. When used to infect chickens, 20 AI isolates could be recovered from oropharyngeal swabs at 5 days post-infection (dpi) without causing significant morbidity. Similarly, mild to no observable disease was observed in mice infected with these viruses although the majority replicated efficiently in murine lungs. As expected, wild bird AI isolates were found to recognize avian-like receptors, while a few strains also exhibited detectable human-like receptor binding. Selected strains were further tested in ferrets, and 15 out of 20 were found to shed the virus in the upper respiratory tract until 5 dpi. Overall, we demonstrate that a diversity of low-pathogenic AI viruses carried by wild migratory birds have the capacity to infect land-based poultry and mammalian hosts while causing minimal signs of clinical disease. This study reiterates that there is a significant capacity for interspecies transmission of AI viruses harboured by wild aquatic birds. Thus, these viruses pose a significant threat to human health underscoring the need for continued surveillance.


Assuntos
Aves/virologia , Furões/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Ligação Viral , Replicação Viral , Animais , Animais Selvagens/virologia , Embrião de Galinha , Fezes/virologia , Feminino , Hemaglutininas/genética , Hemaglutininas/metabolismo , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Pulmão/virologia , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Neuraminidase/genética , Neuraminidase/metabolismo , RNA Viral , Receptores Virais/metabolismo , República da Coreia/epidemiologia
14.
J Microbiol ; 59(5): 530-533, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33907974

RESUMO

To compare the standardized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence of high epicenter region with non-epicenter region, serological studies were performed with a total of 3,268 sera from Daegu City and 3,981 sera from Chungbuk Province. Indirect immunofluorescence assay (IFA) for SARS-CoV-2 IgG results showed a high seroprevalence rate in the Daegu City (epicenter) compared with a non-epicenter area (Chungbuk Province) (1.27% vs. 0.91%, P = 0.0358). It is noteworthy that the highest seroprevalence in Daegu City was found in elderly patients (70's) whereas young adult patients (20's) in Chungbuk Province showed the highest seroprevalence. Neutralizing antibody (NAb) titers were found in three samples from Daegu City (3/3, 268, 0.09%) while none of the samples from Chungbuk Province were NAb positive. These results demonstrated that even following the large outbreak, the seropositive rate of SARS-CoV-2 in the general population remained low in South Korea.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Estudos Soroepidemiológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , República da Coreia , Adulto Jovem
15.
Emerg Microbes Infect ; 10(1): 152-160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33407005

RESUMO

Cases of laboratory-confirmed SARS-CoV-2 reinfection have been reported in a number of countries. Further, the level of natural immunity induced by SARS-CoV-2 infection is not fully clear, nor is it clear if a primary infection is protective against reinfection. To investigate the potential association between serum antibody titres and reinfection of SARS-CoV-2, ferrets with different levels of NAb titres after primary SARS-CoV-2 infection were subjected to reinfection with a heterologous SARS-CoV-2 strain. All heterologous SARS-CoV-2 reinfected ferrets showed active virus replication in the upper respiratory and gastro-intestinal tracts. However, the high NAb titre group showed attenuated viral replication and rapid viral clearance. In addition, direct-contact transmission was observed only from reinfected ferrets with low NAb titres (<20), and not from other groups. Further, lung histopathology demonstrated the presence of limited inflammatory regions in the high NAb titre groups compared with control and low NAb groups. This study demonstrates a close correlation between a low NAb titre and SARS-CoV-2 reinfection in a recovered ferret reinfection model.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/transmissão , Reinfecção/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/virologia , Chlorocebus aethiops , Furões , Células Vero
16.
J Microbiol ; 58(10): 886-891, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32989642

RESUMO

Various treatments and agents had been reported to inactivate RNA viruses. Of these, thermal inactivation is generally considered an effective and cheap method of sample preparation for downstream assays. The purpose of this study is to establish a safe inactivation method for SARS-CoV-2 without compromising the amount of amplifiable viral genome necessary for clinical diagnoses. In this study, we demonstrate the infectivity and genomic stability of SARSCoV- 2 by thermal inactivation at both 56°C and 65°C. The results substantiate that viable SARS-CoV-2 is readily inactivated when incubated at 56°C for 30 min or at 65°C for 10 min. qRT-PCR of specimens heat-inactivated at 56°C for 30 min or 65°C for 15 min revealed similar genomic RNA stability compared with non-heat inactivated specimens. Further, we demonstrate that 30 min of thermal inactivation at 56°C could inactivate viable viruses from clinical COVID-19 specimens without attenuating the qRT-PCR diagnostic sensitivity. Heat treatment of clinical specimens from COVID-19 patients at 56°C for 30 min or 65°C for 15 min could be a useful method for the inactivation of a highly contagious agent, SARS-CoV-2. Use of this method would reduce the potential for secondary infections in BSL2 conditions during diagnostic procedures. Importantly, infectious virus can be inactivated in clinical specimens without compromising the sensitivity of the diagnostic RT-PCR assay.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/virologia , Manejo de Espécimes/métodos , Inativação de Vírus , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/virologia , Genoma Viral , Instabilidade Genômica , Temperatura Alta , Humanos , Pandemias , Pneumonia Viral/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2
17.
mBio ; 11(3)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444382

RESUMO

Due to the urgent need of a therapeutic treatment for coronavirus (CoV) disease 2019 (COVID-19) patients, a number of FDA-approved/repurposed drugs have been suggested as antiviral candidates at clinics, without sufficient information. Furthermore, there have been extensive debates over antiviral candidates for their effectiveness and safety against severe acute respiratory syndrome CoV 2 (SARS-CoV-2), suggesting that rapid preclinical animal studies are required to identify potential antiviral candidates for human trials. To this end, the antiviral efficacies of lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir for SARS-CoV-2 infection were assessed in the ferret infection model. While the lopinavir-ritonavir-, hydroxychloroquine sulfate-, or emtricitabine-tenofovir-treated group exhibited lower overall clinical scores than the phosphate-buffered saline (PBS)-treated control group, the virus titers in nasal washes, stool specimens, and respiratory tissues were similar between all three antiviral-candidate-treated groups and the PBS-treated control group. Only the emtricitabine-tenofovir-treated group showed lower virus titers in nasal washes at 8 days postinfection (dpi) than the PBS-treated control group. To further explore the effect of immune suppression on viral infection and clinical outcome, ferrets were treated with azathioprine, an immunosuppressive drug. Compared to the PBS-treated control group, azathioprine-immunosuppressed ferrets exhibited a longer period of clinical illness, higher virus titers in nasal turbinate, delayed virus clearance, and significantly lower serum neutralization (SN) antibody titers. Taken together, all antiviral drugs tested marginally reduced the overall clinical scores of infected ferrets but did not significantly affect in vivo virus titers. Despite the potential discrepancy of drug efficacies between animals and humans, these preclinical ferret data should be highly informative to future therapeutic treatment of COVID-19 patients.IMPORTANCE The SARS-CoV-2 pandemic continues to spread worldwide, with rapidly increasing numbers of mortalities, placing increasing strain on health care systems. Despite serious public health concerns, no effective vaccines or therapeutics have been approved by regulatory agencies. In this study, we tested the FDA-approved drugs lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir against SARS-CoV-2 infection in a highly susceptible ferret infection model. While most of the drug treatments marginally reduced clinical symptoms, they did not reduce virus titers, with the exception of emtricitabine-tenofovir treatment, which led to diminished virus titers in nasal washes at 8 dpi. Further, the azathioprine-treated immunosuppressed ferrets showed delayed virus clearance and low SN titers, resulting in a prolonged infection. As several FDA-approved or repurposed drugs are being tested as antiviral candidates at clinics without sufficient information, rapid preclinical animal studies should proceed to identify therapeutic drug candidates with strong antiviral potential and high safety prior to a human efficacy trial.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antivirais/farmacologia , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Furões , Humanos , Hidroxicloroquina/uso terapêutico , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Estados Unidos , United States Food and Drug Administration , Carga Viral
18.
Cell Host Microbe ; 27(5): 704-709.e2, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32259477

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and rapidly spread worldwide. To prevent SARS-CoV-2 dissemination, understanding the in vivo characteristics of SARS-CoV-2 is a high priority. We report a ferret model of SARS-CoV-2 infection and transmission that recapitulates aspects of human disease. SARS-CoV-2-infected ferrets exhibit elevated body temperatures and virus replication. Although fatalities were not observed, SARS-CoV-2-infected ferrets shed virus in nasal washes, saliva, urine, and feces up to 8 days post-infection. At 2 days post-contact, SARS-CoV-2 was detected in all naive direct contact ferrets. Furthermore, a few naive indirect contact ferrets were positive for viral RNA, suggesting airborne transmission. Viral antigens were detected in nasal turbinate, trachea, lungs, and intestine with acute bronchiolitis present in infected lungs. Thus, ferrets represent an infection and transmission animal model of COVID-19 that may facilitate development of SARS-CoV-2 therapeutics and vaccines.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Furões , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , Animais , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , COVID-19 , Modelos Animais de Doenças , Pandemias , SARS-CoV-2 , Vacinas Virais/imunologia , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA