Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 36(16): 4513-4515, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559277

RESUMO

MOTIVATION: Molecular docking is a computational technique for predicting how a small molecule might bind a macromolecular target. Among docking programs, AutoDock Vina is particularly popular. Like many docking programs, Vina requires users to download/install an executable file and to run that file from a command-line interface. Choosing proper configuration parameters and analyzing Vina output is also sometimes challenging. These issues are particularly problematic for students and novice researchers. RESULTS: We created Webina, a new version of Vina, to address these challenges. Webina runs Vina entirely in a web browser, so users need only visit a Webina-enabled webpage. The docking calculations take place on the user's own computer rather than a remote server. AVAILABILITY AND IMPLEMENTATION: A working version of the open-source Webina app can be accessed free of charge from http://durrantlab.com/webina. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Computadores , Software , Humanos , Ligantes , Simulação de Acoplamento Molecular , Navegador
2.
PLoS Comput Biol ; 16(3): e1007747, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32231351

RESUMO

Protein structure determines biological function. Accurately conceptualizing 3D protein/ligand structures is thus vital to scientific research and education. Virtual reality (VR) enables protein visualization in stereoscopic 3D, but many VR molecular-visualization programs are expensive and challenging to use; work only on specific VR headsets; rely on complicated model-preparation software; and/or require the user to install separate programs or plugins. Here we introduce ProteinVR, a web-based application that works on various VR setups and operating systems. ProteinVR displays molecular structures within 3D environments that give useful biological context and allow users to situate themselves in 3D space. Our web-based implementation is ideal for hypothesis generation and education in research and large-classroom settings. We release ProteinVR under the open-source BSD-3-Clause license. A copy of the program is available free of charge from http://durrantlab.com/protein-vr/, and a working version can be accessed at http://durrantlab.com/pvr/.


Assuntos
Biologia Computacional/métodos , Imageamento Tridimensional/métodos , Internet , Proteínas , Realidade Virtual , Conformação Proteica , Proteínas/química , Proteínas/ultraestrutura
3.
PLoS One ; 19(8): e0308574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190712

RESUMO

TOR (target of rapamycin), a ubiquitous protein kinase central to cellular homeostasis maintenance, fundamentally regulates ribosome biogenesis in part by its target La-related protein 1 (LARP1). Among other target transcripts, LARP1 specifically binds TOP (terminal oligopyrimidine) mRNAs encoding all 80 ribosomal proteins in a TOR-dependent manner through its C-terminal region containing the DM15 module. Though the functional implications of the LARP1 interaction with target mRNAs is controversial, it is clear that the TOP-LARP1-TOR axis is critical to cellular health in humans. Its existence and role in evolutionarily divergent animals remain less understood. We focused our work on expanding our knowledge of the first arm of the axis: the connection between LARP1-DM15 and the 5' TOP motif. We show that the overall DM15 architecture observed in humans is conserved in fruit fly and zebrafish. Both adopt familiar curved arrangements of HEAT-like repeats that bind 5' TOP mRNAs on the same conserved surface, although molecular dynamics simulations suggest that the N-terminal fold of the fruit fly DM15 is predicted to be unstable and unfold. We demonstrate that each ortholog interacts with TOP sequences with varying affinities. Importantly, we determine that the ability of the DM15 region to bind some TOP sequences but not others might amount to the context of the RNA structure, rather than the ability of the module to recognize some sequences but not others. We propose that TOP mRNAs may retain similar secondary structures to regulate LARP1 DM15 recognition.


Assuntos
Autoantígenos , Evolução Molecular , Ribonucleoproteínas , Antígeno SS-B , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/química , Autoantígenos/metabolismo , Autoantígenos/genética , Autoantígenos/química , Animais , Humanos , Peixe-Zebra/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Ligação Proteica
4.
Structure ; 27(12): 1771-1781.e5, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31676287

RESUMO

The RNA-binding protein La-related protein 1 (LARP1) plays a central role in ribosome biosynthesis. Its C-terminal DM15 region binds the 7-methylguanosine (m7G) cap and 5' terminal oligopyrimidine (TOP) motif characteristic of transcripts encoding ribosomal proteins and translation factors. Under the control of mammalian target of rapamycin complex 1 (mTORC1), LARP1 regulates translation of these transcripts. Characterizing the dynamics of DM15-TOP recognition is essential to understanding this fundamental biological process. We use molecular dynamics simulations, biophysical assays, and X-ray crystallography to reveal the mechanism of DM15 binding to TOP transcripts. Residues C-terminal to the m7G-binding site play important roles in cap recognition. Furthermore, we show that the unusually static pocket that recognizes the +1 cytosine characteristic of TOP transcripts drives binding specificity. Finally, we demonstrate that the DM15 pockets involved in TOP-specific m7GpppC-motif recognition are likely druggable. Collectively, these studies suggest unique opportunities for further pharmacological development.


Assuntos
Autoantígenos/química , Guanosina/análogos & derivados , RNA Mensageiro/química , Ribonucleoproteínas/química , Proteína S6 Ribossômica/química , Motivos de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanosina/química , Guanosina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Especificidade por Substrato , Termodinâmica , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA