Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Brain Mapp ; 43(3): 915-928, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34877718

RESUMO

Numerical estimation of arrays of objects is faster and more accurate when items can be clustered into groups, a phenomenon termed "groupitizing." Grouping can facilitate segregation into subitizable "chunks," each easily estimated, then summed. The current study investigates whether spatial grouping of arrays drives specific neural responses during numerical estimation, reflecting strategies such as exact calculation and fact retrieval. Fourteen adults were scanned with fMRI while estimating either the numerosity or shape of arrays of items, either randomly distributed or spatially grouped. Numerosity estimation of both classes of stimuli elicited common activation of a right lateralized frontoparietal network. Grouped stimuli additionally recruited regions in the left hemisphere and bilaterally in the angular gyrus. Multivariate pattern analysis showed that classifiers trained with the pattern of neural activations read out from parietal regions, but not from the primary visual areas, can decode different numerosities both within and across spatial arrangements. The behavioral numerical acuity correlated with the decoding performance of the parietal but not with occipital regions. Overall, this experiment suggests that the estimation of grouped stimuli relies on the approximate number system for numerosity estimation, but additionally recruits regions involved in calculation.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Julgamento/fisiologia , Conceitos Matemáticos , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
2.
Behav Brain Sci ; 44: e185, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34907873

RESUMO

To understand the number sense, we need to understand its function. We argue that numerosity estimation is fundamental not only for perception, but also preparation and control of action. We outline experiments that link numerosity estimation with action, pointing to a generalized numerosity system that serves both perception and action preparation.


Assuntos
Cognição , Percepção Visual , Humanos
3.
Neuroimage ; 221: 117210, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745675

RESUMO

Human functional imaging has identified the middle part of the intraparietal sulcus (IPS) as an important brain substrate for different types of numerical tasks. This area is often equated with the macaque ventral intraparietal area (VIP) where neuronal selectivity for non-symbolic numerical stimuli (sets of items) is found. However, the low spatial resolution and whole-brain averaging analysis performed in most fMRI studies limit the extent to which an exact correspondence of activations in different numerical tasks with specific sub-regions of the IPS can be established. Here we acquired high-resolution 7T fMRI data in a group of human adults and related the activations in several numerical contrasts (implying different numerical stimuli and tasks) to anatomical and functional landmarks on the cortical surface. Our results reveal a functional heterogeneity within human intraparietal cortex where the retinotopic visual field maps in superior/medial parts of the IPS and superior parietal gyrus respond preferentially to the visual processing of concrete sets of items (over single Arabic numerals), whereas lateral/inferior parts of the IPS are predominantly recruited during numerical operations such as calculation and quantitative comparison. Since calculation and comparison-related activity fell mainly outside the retinotopic visual field maps considered the human functional equivalent of the monkey VIP/LIP complex, the areas most activated during such numerical operations in humans are likely different from VIP.


Assuntos
Mapeamento Encefálico , Cognição , Imageamento por Ressonância Magnética , Conceitos Matemáticos , Lobo Parietal , Reconhecimento Visual de Modelos , Pensamento/fisiologia , Campos Visuais , Adulto , Cognição/fisiologia , Feminino , Humanos , Masculino , Lobo Parietal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
4.
Proc Biol Sci ; 287(1935): 20201884, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32962551

RESUMO

Fast saccades are rapid automatic oculomotor responses to salient and ecologically important visual stimuli such as animals and faces. Discriminating the number of friends, foe, or prey may also have an evolutionary advantage. In this study, participants were asked to saccade rapidly towards the more numerous of two arrays. Participants could discriminate numerosities with high accuracy and great speed, as fast as 190 ms. Intermediate numerosities were more likely to elicit fast saccades than very low or very high numerosities. Reaction-times for vocal responses (collected in a separate experiment) were slower, did not depend on numerical range, and correlated only with the slow not the fast saccades, pointing to different systems. The short saccadic reaction-times we observe are surprising given that discrimination using numerosity estimation is thought to require a relatively complex neural circuit, with several relays of information through the parietal and prefrontal cortex. Our results suggest that fast numerosity-driven saccades may be generated on a single feed-forward pass of information recruiting a primitive system that cuts through the cortical hierarchy and rapidly transforms the numerosity information into a saccade command.


Assuntos
Movimentos Sacádicos , Adulto , Animais , Feminino , Humanos , Masculino , Tempo de Reação , Percepção Visual , Adulto Jovem
5.
J Vis ; 20(8): 7, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756882

RESUMO

Visual crowding refers to the inability to identify objects when surrounded by other similar items. Crowding-like mechanisms are thought to play a key role in numerical perception by determining the sensory mechanisms through which ensembles are perceived. Enhanced visual crowding might hence prevent the normal development of a system involved in segregating and perceiving discrete numbers of items and ultimately the acquisition of more abstract numerical skills. Here, we investigated whether excessive crowding occurs in developmental dyscalculia (DD), a neurodevelopmental disorder characterized by difficulty in learning the most basic numerical and arithmetical concepts, and whether it is found independently of associated major reading and attentional difficulties. We measured spatial crowding in two groups of adult individuals with DD and control subjects. In separate experiments, participants were asked to discriminate the orientation of a Gabor patch either in isolation or under spatial crowding. Orientation discrimination thresholds were comparable across groups when stimuli were shown in isolation, yet they were much higher for the DD group with respect to the control group when the target was crowded by closely neighbouring flanking gratings. The difficulty in discriminating orientation (as reflected by the combination of accuracy and reaction times) in the DD compared to the control group persisted over several larger target flanker distances. Finally, we found that the degree of such spatial crowding correlated with impairments in mathematical abilities even when controlling for visual attention and reading skills. These results suggest that excessive crowding effects might be a characteristic of DD, independent of other associated neurodevelopmental disorders.


Assuntos
Aglomeração , Discalculia/fisiopatologia , Percepção Visual/fisiologia , Adulto , Atenção , Feminino , Humanos , Aprendizagem , Masculino , Testes Neuropsicológicos , Orientação Espacial , Reconhecimento Visual de Modelos , Tempo de Reação , Leitura , Adulto Jovem
7.
Behav Brain Sci ; 40: e169, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342652

RESUMO

Leibovich et al. opened up an important discussion on the nature and origins of numerosity perception. The authors rightly point out that non-numerical features of stimuli influence this ability. Despite these biases, there is evidence that from birth, humans perceive and represent numerosities, and not just non-numerical quantitative features such as item size, density, and convex hull.


Assuntos
Cognição , Percepção , Humanos
8.
Sci Rep ; 14(1): 6097, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480839

RESUMO

We recently showed that the gain of the pupillary light response depends on numerosity, with weaker responses to fewer items. Here we show that this effect holds when the stimuli are physically identical but are perceived as less numerous due to numerosity adaptation. Twenty-eight participants adapted to low (10 dots) or high (160 dots) numerosities and subsequently watched arrays of 10-40 dots, with variable or homogeneous dot size. Luminance was constant across all stimuli. Pupil size was measured with passive viewing, and the effects of adaptation were checked in a separate psychophysical session. We found that perceived numerosity was systematically lower, and pupillary light responses correspondingly smaller, following adaptation to high rather than low numerosities. This is consistent with numerosity being a primary visual feature, spontaneously encoded even when task irrelevant, and affecting automatic and unconscious behaviours like the pupillary light response.


Assuntos
Pupila , Visão Ocular , Humanos , Conceitos Matemáticos , Inconsciência , Luz
9.
Res Dev Disabil ; 149: 104733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663331

RESUMO

Developmental dyscalculia (DD) is a specific learning disability which prevents children from acquiring adequate numerical and arithmetical competences. We investigated whether difficulties in children with DD spread beyond the numerical domain and impact also their ability to perceive time. A group of 37 children/adolescent with and without DD were tested with an auditory categorization task measuring time perception thresholds in the sub-second (0.25-1 s) and supra-second (0.75-3 s) ranges. Results showed that auditory time perception was strongly impaired in children with DD at both time scales. The impairment remained even when age, non-verbal reasoning, and gender were regressed out. Overall, our results show that the difficulties of DD can affect magnitudes other than numerical and contribute to the increasing evidence that frames dyscalculia as a disorder affecting multiple neurocognitive and perceptual systems.


Assuntos
Percepção Auditiva , Discalculia , Percepção do Tempo , Humanos , Discalculia/fisiopatologia , Discalculia/psicologia , Feminino , Masculino , Criança , Percepção Auditiva/fisiologia , Adolescente , Estudos de Casos e Controles
10.
Brain Sci ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248284

RESUMO

A precise neuropsychological assessment is of the utmost importance for neurosurgical patients undergoing the surgical excision of cerebral lesions. The assessment of mathematical abilities is usually limited to arithmetical operations while other fundamental visuo-spatial aspects closely linked to mathematics proficiency, such as the perception of numerical quantities and geometrical reasoning, are completely neglected. We evaluated these abilities with two objective and reproducible psychophysical tests, measuring numerosity perception and non-symbolic geometry, respectively. We tested sixteen neuro-oncological patients before the operation and six after the operation with classical neuropsychological tests and with two psychophysical tests. The scores of the classical neuropsychological tests were very heterogeneous, possibly due to the distinct location and histology of the tumors that might have spared (or not) brain areas subserving these abilities or allowed for plastic reorganization. Performance in the two non-symbolic tests reflected, on average, the presumed functional role of the lesioned areas, with participants with parietal and frontal lesions performing worse on these tests than patients with occipital and temporal lesions. Single-case analyses not only revealed some interesting exceptions to the group-level results (e.g., patients with parietal lesions performing well in the numerosity test), but also indicated that performance in the two tests was independent of non-verbal reasoning and visuo-spatial working memory. Our results highlight the importance of assessing non-symbolic numerical and geometrical abilities to complement typical neuropsychological batteries. However, they also suggest an avoidance of reliance on an excessively rigid localizationist approach when evaluating the neuropsychological profile of oncological patients.

11.
J Neurosurg ; : 1-12, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905716

RESUMO

OBJECTIVE: The onco-functional balance represents the primary goal in neuro-oncology. The increasing use of navigated transcranial magnetic stimulation (nTMS) allows the noninvasive characterization of cortical functional anatomy, and its reliability for motor and language mapping has previously been validated. Calculation and arithmetic processing has not been studied with nTMS so far. In this study, the authors present their preliminary data concerning nTMS calculation. METHODS: The authors designed a monocentric prospective study, adopting an internal protocol to use nTMS for preoperative planning, including arithmetic processing. When awake surgery was possible, according to the patients' conditions, nTMS points were used to guide direct cortical stimulation (DCS), i.e., the gold standard for cortical mapping. Navigated TMS-based tractography was used for surgical planning. Statistical analyses on the nTMS and DCS points were performed. RESULTS: From February 2021 to October 2023, 61 procedures for nTMS calculation mapping were performed. The clinical evaluation, including pre- and postoperative evaluations (3 months after surgery), demonstrated a good clinical outcome with preservation of arithmetic function and recovery (92.8% of patients). Between the awake and asleep surgery groups, the postoperative clinical results were comparable at the 3-month follow-up, with > 90% of the patients achieving improved calculation function. The surgical strategy adopted was aimed at sparing nTMS positive points in asleep procedures, whereas nTMS and DCS positive points were not removed in awake procedures. Overall, 62% of the positive points for calculation functions were exposed by craniotomy and 85% were spared during surgery. None of the patients developed nTMS-related seizures. Diffusion tensor imaging fiber tracking based on nTMS positive points for calculation was used. The white matter fiber tracts involved in calculation functions were the arcuate fasciculus (56%) and frontal aslant tract (22%). When nTMS and DCS points were compared in awake surgery (n = 10 patients), a sensitivity of 31.71%, specificity of 85.76%, positive predictive value of 22.41%, negative predictive value of 90.64%, and accuracy of approximately 69% were achieved. CONCLUSIONS: Based on the authors' preliminary data, nTMS can be an advantageous tool to study cognitive functions, aimed at minimizing neurological impairment. The postoperative clinical outcome for patients who underwent operation with nTMS was very good. Considering these results, nTMS has proved to be a feasible method to map cognitive areas including those for calculation functions. Further analyses are needed to validate these data. Finally, other cognitive functions (e.g., visuospatial) may be explored with nTMS.

12.
Sci Rep ; 13(1): 12509, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532765

RESUMO

Symmetry is an important and strong cue we rely on to organize the visual world. Although it is at the basis of objects segmentation in a visual scene, it can sometimes bias our perception. When asked to discriminate numerical quantities between symmetric and asymmetric arrays, individuals tend to underestimate the number of items in the symmetric stimuli. The reason for this underestimation is currently unknown. In this study we investigated whether the symmetry-induced numerosity underestimation depends on perceptual grouping mechanisms by depriving attentional resources. Twenty-six adults judged the numerosity of dot arrays arranged symmetrically or randomly, while ignoring a visual distractor (single task) or while simultaneously judging its color and orientation (dual-task). Diverting attention to the concurrent color-orientation conjunction task halved the symmetry-induced numerosity underestimation. Taken together these results showed that the bias in numerosity perception of symmetric arrays depends-at least partially-on attentional resources and suggested that it might originate from the recruitment of attentional dependent incremental grouping mechanisms.


Assuntos
Ilusões , Adulto , Humanos , Reconhecimento Visual de Modelos , Percepção Visual
13.
Front Neurosci ; 17: 1190317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292163

RESUMO

The moment we see a group of objects, we can appreciate its numerosity. Our numerical estimates can be imprecise for large sets (>4 items), but they become much faster and more accurate if items are clustered into groups compared to when they are randomly displaced. This phenomenon, termed groupitizing, is thought to leverage on the capacity to quickly identify groups from 1 to 4 items (subitizing) within larger sets, however evidence in support for this hypothesis is scarce. The present study searched for an electrophysiological signature of subitizing while participants estimated grouped numerosities exceeding this range by measuring event-related potential (ERP) responses to visual arrays of different numerosities and spatial configurations. The EEG signal was recorded while 22 participants performed a numerosity estimation task on arrays with numerosities in the subitizing (3 or 4) or estimation (6 or 8) ranges. In the latter case, items could be spatially arranged into subgroups (3 or 4) or randomly scattered. In both ranges, we observed a decrease in N1 peak latency as the number of items increased. Importantly, when items were arranged to form subgroups, we showed that the N1 peak latency reflected both changes in total numerosity and changes in the number of subgroups. However, this result was mainly driven by the number of subgroups to suggest that clustered elements might trigger the recruitment of the subitizing system at a relatively early stage. At a later stage, we found that P2p was mostly modulated by the total numerosity in the set, with much less sensitivity for the number of subgroups these might be segregated in. Overall, this experiment suggests that the N1 component is sensitive to both local and global parcelling of elements in a scene suggesting that it could be crucially involved in the emergence of the groupitizing advantage. On the other hand, the later P2p component seems to be much more bounded to the global aspects of the scene coding the total number of elements while being mostly blind to the number of subgroups in which elements are parsed.

14.
Neuropsychologia ; 166: 108140, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34990696

RESUMO

Developmental dyscalculia (DD) is a specific learning disability affecting the development of numerical and arithmetical skills. The origin of DD is typically attributed to the suboptimal functioning of key regions within the dorsal visual stream (parietal cortex) which support numerical cognition. While DD individuals are often impaired in visual numerosity perception, the extent to which they also show a wider range of visual dysfunctions is poorly documented. In the current study we measured sensitivity to global motion (translational and flow), 2D static form (Glass patterns) and 3D structure from motion in adults with DD and control subjects. While sensitivity to global motion was comparable across groups, thresholds for static form and structure from motion were higher in the DD compared to the control group, irrespective of associated reading impairments. Glass pattern sensitivity predicted numerical abilities, and this relation could not be explained by recently reported differences in visual crowding. Since global form sensitivity has often been considered an index of ventral stream function, our findings could indicate a cortical dysfunction extending beyond the dorsal visual stream. Alternatively, they would fit with a role of parietal cortex in form perception under challenging conditions requiring multiple element integration.


Assuntos
Discalculia , Percepção de Forma , Percepção de Movimento , Adulto , Discalculia/diagnóstico por imagem , Humanos , Matemática , Lobo Parietal/diagnóstico por imagem , Percepção Visual
15.
Sci Rep ; 12(1): 14418, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002617

RESUMO

To estimate the number of objects in an image, each element needs to be segregated as a single unit. Several principles guide the process of element identification, one of the strongest being symmetry. In the current study, we investigated how symmetry affects the ability to rapidly estimate the number of objects (numerosity). Participants judged the numerosity of asymmetric or symmetric arrays of various numerosities. The results show that the numerosity of symmetrical arrays was significantly underestimated at low numerosities, but the effect was greatly reduced at higher numerosities. Adding an additional axis of symmetry (double symmetry) further reduced perceived numerosity. The magnitude of the symmetry-driven underestimation was inversely correlated with autistic personality traits, consistent with previous work associating autistic traits with perceptual grouping. Overall, these results support the idea that perceived numerosity relies on object segmentation and grouping cues, with symmetry playing a key role.


Assuntos
Transtorno Autístico , Sinais (Psicologia) , Humanos , Percepção
16.
Brain Sci ; 12(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447954

RESUMO

Many individuals, when faced with mathematical tasks or situations requiring arithmetic skills, experience exaggerated levels of anxiety. Mathematical anxiety (MA), in addition to causing discomfort, can lead to avoidance behaviors and then to underachievement. However, the factors inducing MA and how MA deploys its detrimental effects are still largely debated. There is evidence suggesting that MA affects working memory capacity by further diminishing its limited processing resources. An alternative account postulates that MA originates from a coarse early numerical cognition capacity, the perception of numerosity. In the current study, we measured MA, math abilities, numerosity perception and visuo-spatial working memory (VSWM) in a sample of neurotypical adults. Correlational analyses confirmed previous studies showing that high MA was associated with lower math scores and worse numerosity estimation precision. Conversely, MA turned out to be unrelated to VSWM capacities. Finally, partial correlations revealed that MA fully accounted for the relationship between numerosity estimation precision and math abilities, suggesting a key role for MA as a mediating factor between these two domains.

17.
Front Hum Neurosci ; 15: 751098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867244

RESUMO

Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.e., susceptible to biases from non-numerical quantities). Such biases have been found to be particularly pronounced in individuals with developmental dyscalculia (DD), a learning disability affecting the acquisition of arithmetic skills. Motivated by findings showing that DD individuals are also often impaired in visuo-spatial working memory, we hypothesized that resources supporting this type of working memory, which allow for the simultaneous identification of multiple objects, might also be critical for precise and unbiased perception of larger numerosities. We therefore tested whether loading working memory of healthy adult participants during discrimination of large numerosities would lead to increased interference from non-numerical quantities. Participants performed a numerosity discrimination task on multi-item arrays in which numerical and non-numerical stimulus dimensions varied congruently or incongruently relative to each other, either in isolation or in the context of a concurrent visuo-spatial or verbal working memory task. During performance of the visuo-spatial, but not verbal, working memory task, precision in numerosity discrimination decreased, participants' choices became strongly biased by item size, and the strength of this bias correlated with measures of arithmetical skills. Moreover, the interference between numerosity and working memory tasks was bidirectional, with number discrimination impacting visuo-spatial (but not verbal) performance. Overall, these results suggest that representing visual numerosity in a way that is unbiased by non-numerical quantities relies on processes which explicitly segregate/identify the locations of multiple objects that are shared with visuo-spatial (but not verbal) working memory. This shared resource may potentially be impaired in DD, explaining the observed co-occurrence of working memory and numerosity discrimination deficits in this clinical population.

18.
Nat Commun ; 12(1): 5944, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642335

RESUMO

Although luminance is the main determinant of pupil size, the amplitude of the pupillary light response is also modulated by stimulus appearance and attention. Here we ask whether perceived numerosity modulates the pupillary light response. Participants passively observed arrays of black or white dots of matched physical luminance but different physical or illusory numerosity. In half the patterns, pairs of dots were connected by lines to create dumbbell-like shapes, inducing an illusory underestimation of perceived numerosity; in the other half, connectors were either displaced or removed. Constriction to white arrays and dilation to black were stronger for patterns with higher perceived numerosity, either physical or illusory, with the strength of the pupillary light response scaling with the perceived numerosity of the arrays. Our results show that even without an explicit task, numerosity modulates a simple automatic reflex, suggesting that numerosity is a spontaneously encoded visual feature.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Pupila/fisiologia , Reflexo Pupilar/fisiologia , Visão Ocular/fisiologia , Adulto , Feminino , Humanos , Ilusões , Luz , Masculino , Estimulação Luminosa/métodos
19.
Acta Psychol (Amst) ; 215: 103296, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33765520

RESUMO

The representation of space, time and number is believed to rely on a common encoding system developed to support action guidance. While the ecological advantage of such a shared system is evident when objects are located within the region of space we can act on (known as peri-personal space), it is less obvious in the case of objects located beyond our arms' reach. In the current study we investigated whether and to what extent the distance of the stimuli from the observer affects the perception of duration and numerosity. We first replicated Anelli et al.'s (2015) experiment by asking adult participants to perform a duration reproduction task with stimuli of different sizes displayed in the peri- or extra-personal space, and then applied the same paradigm to a non-symbolic numerosity estimation task. Results show that, independently of size, duration estimates were overestimated when visual stimuli were presented in the extra-personal space, replicating previous findings. A similar effect was also found for numerosity perception, however overestimation for far stimuli was much smaller in magnitude and was accounted by the difference in perceived size between stimuli presented in peripersonal or extrapersonal space. Overall, these results suggest that, while the processing of temporal information is robustly affected by the position of the stimuli in either the peri- or extra-personal space, numerosity perception is independent from stimulus distance. We speculate that, while time and numerosity may be encoded by a shared system in the peri-personal space (to optimize action execution), different and partially independent mechanisms may underlie the representation of time and numerosity in extra-personal space. Furthermore, these results suggest that investigating magnitude perception across spatial planes (where it is or is not possible to act) may unveil processing differences that would otherwise pass unnoticed.


Assuntos
Espaço Pessoal , Percepção Espacial , Adulto , Braço , Humanos
20.
Trends Cogn Sci ; 25(1): 24-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221159

RESUMO

Incoming sensory input provides information for the planning and execution of actions, which yield motor outcomes that are themselves sensory inputs. One dimension where action and perception strongly interact is numerosity perception. Many non-human animals can estimate approximately the number of external elements as well as their own actions, and neurons have been identified that respond to both. Recent psychophysical adaptation studies on humans also provide evidence for neural mechanisms responding to both the number of externally generated events and self-produced actions. Here we advance the idea that these strong connections may arise from dedicated sensorimotor mechanisms in the brain, part of a more generalized system interfacing action with the processing of other quantitative magnitudes such as space and time.


Assuntos
Adaptação Fisiológica , Encéfalo , Animais , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA