Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Chem ; 91(14): 9129-9137, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31265256

RESUMO

Nontargeted screening methodologies are powerful approaches for comprehensive chemical characterization of complex matrixes. In order to maximize chemical space coverage, three analytical methods using two-dimensional gas chromatography with time-of-flight mass spectrometry for nonpolar, polar, and volatile compounds have been established. The structural identification process was streamlined with an in-house developed computer-assisted structure identification platform, which facilitated the identification of novel compounds and also delivered semiquantitative concentrations for all compounds. Key performance parameters for this nontargeted platform, including chemical space coverage, confidence for structural identification, accuracy of semiquantification, and performance of differential analysis, were evaluated. The automated structural identification process was assessed using a subset of 243 compounds (out of 2990), which were confirmed to be present in cigarette smoke using reference standards. Consistently high true positive identification rates between 88.2% and 96.2% across the different concentration ranges investigated were demonstrated. Accuracy for semiquantification was assessed by comparison with quantitative data from literature, where a maximum 4-fold deviation from available targeted analysis values was estimated.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Poluição por Fumaça de Tabaco/análise , Cromatografia Gasosa-Espectrometria de Massas/estatística & dados numéricos
2.
Anal Chem ; 88(15): 7539-47, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27403731

RESUMO

Monitoring of volatile and semivolatile compounds was performed using gas chromatography (GC) coupled to high-resolution electron ionization mass spectrometry, using both headspace and liquid injection modes. A total of 560 reference compounds, including 8 odd n-alkanes, were analyzed and experimental linear retention indices (LRI) were determined. These reference compounds were randomly split into training (n = 401) and test (n = 151) sets. LRI for all 552 reference compounds were also calculated based upon computational Quantitative Structure-Property Relationship (QSPR) models, using two independent approaches RapidMiner (coupled to Dragon) and ACD/ChromGenius software. Correlation coefficients for experimental versus predicted LRI values calculated for both training and test set compounds were calculated at 0.966 and 0.949 for RapidMiner and at 0.977 and 0.976 for ACD/ChromGenius, respectively. In addition, the cross-validation correlation was calculated at 0.96 from RapidMiner and the residual standard error value obtained from ACD/ChromGenius was 53.635. These models were then used to predict LRI values for several thousand compounds reported present in tobacco and tobacco-related fractions, plus a range of specific flavor compounds. It was demonstrated that using the mean of the LRI values predicted by RapidMiner and ACD/ChromGenius, in combination with accurate mass data, could enhance the confidence level for compound identification from the analysis of complex matrixes, particularly when the two predicted LRI values for a compound were in close agreement. Application of this LRI modeling approach to matrixes with unknown composition has already enabled the confirmation of 23 postulated compounds, demonstrating its ability to facilitate compound identification in an analytical workflow. The goal is to reduce the list of putative candidates to a reasonable relevant number that can be obtained and measured for confirmation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA