Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 898, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294862

RESUMO

The development of therapeutics depends on predictions of clinical activity from pre-clinical data. We have previously described SYNB1618, an engineered bacterial therapeutic (synthetic biotic) for the treatment of Phenylketonuria (PKU), a rare genetic disease that leads to accumulation of plasma phenylalanine (Phe) and severe neurological complications. SYNB1618 consumes Phe in preclinical models, healthy human volunteers, and PKU patients. However, it remains unclear to what extent Phe consumption by SYNB1618 in the gastrointestinal tract lowers plasma Phe levels in PKU patients. Here, we construct a mechanistic model that predicts SYNB1618 function in non-human primates and healthy subjects by combining in vitro simulations and prior knowledge of human physiology. In addition, we extend a model of plasma Phe kinetics in PKU patients, in order to estimate plasma Phe lowering by SYNB1618. This approach provides a framework that can be used more broadly to define the therapeutic potential of synthetic biotics.


Assuntos
Voluntários Saudáveis , Fenilcetonúrias/genética , Primatas/fisiologia , Animais , Humanos , Fenilcetonúrias/metabolismo , Primatas/genética
2.
Nat Commun ; 12(1): 2805, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990606

RESUMO

Engineered bacteria (synthetic biotics) represent a new class of therapeutics that leverage the tools of synthetic biology. Translational testing strategies are required to predict synthetic biotic function in the human body. Gut-on-a-chip microfluidics technology presents an opportunity to characterize strain function within a simulated human gastrointestinal tract. Here, we apply a human gut-chip model and a synthetic biotic designed for the treatment of phenylketonuria to demonstrate dose-dependent production of a strain-specific biomarker, to describe human tissue responses to the engineered strain, and to show reduced blood phenylalanine accumulation after administration of the engineered strain. Lastly, we show how in vitro gut-chip models can be used to construct mechanistic models of strain activity and recapitulate the behavior of the engineered strain in a non-human primate model. These data demonstrate that gut-chip models, together with mechanistic models, provide a framework to predict the function of candidate strains in vivo.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Terapia Biológica/métodos , Microbioma Gastrointestinal , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Fenilcetonúrias/terapia , Animais , Células CACO-2 , Simulação por Computador , Escherichia coli/metabolismo , Engenharia Genética , Células HT29 , Humanos , Técnicas In Vitro , Microfluídica , Fenilalanina/metabolismo , Fenilcetonúrias/metabolismo , Fenilcetonúrias/microbiologia , Primatas , Biologia Sintética
3.
Nat Metab ; 3(8): 1125-1132, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294923

RESUMO

Phenylketonuria (PKU) is a rare disease caused by biallelic mutations in the PAH gene that result in an inability to convert phenylalanine (Phe) to tyrosine, elevated blood Phe levels and severe neurological complications if untreated. Most patients are unable to adhere to the protein-restricted diet, and thus do not achieve target blood Phe levels. We engineered a strain of E. coli Nissle 1917, designated SYNB1618, through insertion of the genes encoding phenylalanine ammonia lyase and L-amino acid deaminase into the genome, which allow for bacterial consumption of Phe within the gastrointestinal tract. SYNB1618 was studied in a phase 1/2a randomized, placebo-controlled, double-blind, multi-centre, in-patient study ( NCT03516487 ) in adult healthy volunteers (n = 56) and patients with PKU and blood Phe level ≥600 mmol l-1 (n = 14). Participants were randomized to receive a single dose of SYNB1618 or placebo (part 1) or up to three times per day for up to 7 days (part 2). The primary outcome of this study was safety and tolerability, and the secondary outcome was microbial kinetics. A D5-Phe tracer (15 mg kg-1) was used to study exploratory pharmacodynamic effects. SYNB1618 was safe and well tolerated with a maximum tolerated dose of 2 × 1011 colony-forming units. Adverse events were mostly gastrointestinal and of mild to moderate severity. All participants cleared the bacteria within 4 days of the last dose. Dose-responsive increases in strain-specific Phe metabolites in plasma (trans-cinnamic acid) and urine (hippuric acid) were observed, providing a proof of mechanism for the potential to use engineered bacteria in the treatment of rare metabolic disorders.


Assuntos
Terapia Biológica/métodos , Escherichia coli , Fenilcetonúrias/terapia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Terapia Biológica/efeitos adversos , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia Genética , Humanos , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilcetonúrias/sangue , Fenilcetonúrias/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA