Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(2): 75, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30648204

RESUMO

Metaldehyde is recognised as an emerging contaminant. It is a powerful molluscicide and is the active compound in many types of slug pellets used for the protection of crops. The application of pellets to land generally takes place between August and December when slugs thrive. Due to its high use and physico-chemical properties, metaldehyde can be present in the aquatic environment at concentrations above the EU Drinking Water Directive limit of 100 ng L-1 for a single pesticide. Such high concentrations are problematic when these waters are used in the production of drinking water. Being able to effectively monitor this pollutant of concern is important. We compared four different monitoring techniques (spot and automated bottle sampling, on-line gas chromatography/mass spectrometry (GC/MS) and passive sampling) to estimate the concentration of metaldehyde. Trials were undertaken in the Mimmshall Brook catchment (Hertfordshire, UK) and in a feed in a drinking water treatment plant for differing periods between 17th October and 31st December 2017. This period coincided with the agricultural application of metaldehyde. Overall, there was a good agreement between the concentrations measured by the four techniques, each providing complementary information. The highest resolution data was obtained using the on-line GC/MS. During the study, there was a large exceedance (500 ng L-1) of metaldehyde that entered the treatment plant; but this was not related to rainfall in the area. Each monitoring method had its own advantages and disadvantages for monitoring investigations, particularly in terms of cost and turn-a-round time of data.


Assuntos
Acetaldeído/análogos & derivados , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Acetaldeído/análise , Agricultura , Produtos Agrícolas , Água Potável/análise , Cromatografia Gasosa-Espectrometria de Massas , Moluscocidas , Purificação da Água
2.
Environ Sci Process Impacts ; 20(8): 1180-1190, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30062348

RESUMO

Metaldehyde is a molluscicide and the active ingredient in formulated slug pellets used for the protection of crops. Due to its mobility in the environment it is frequently found in river catchments, often at concentrations exceeding the EU Drinking Water Directive limit of 100 ng L-1 for a single pesticide. This presents a major problem for water companies in the UK where such waters are abstracted for production of potable drinking water supplies. Therefore, it is important to understand the sources, transport and fate of this emerging pollutant of concern in the aquatic environment. We monitored metaldehyde in two contrasting river catchments (River Dee (8 sites) and River Thames (6 sites)) over a twelve month period that coincided with the agricultural application period of the molluscicide. Spot samples of water were collected typically weekly or fortnightly. Chemcatcher® passive samplers were deployed consecutively every two weeks. At the River Dee, there was little variability in the concentrations of metaldehyde (<10-110 ng L-1) measured in the spot samples of water. The Chemcatcher® gave similar time-weighted average concentrations which were higher following increased rain fall events. At the River Thames, concentrations of metaldehyde varied more widely (<9-4200 ng L-1) with several samples exceeding 100 ng L-1. Generally these concentrations were reflected in the time-weighted average concentrations obtained using the Chemcatcher®. Both monitoring techniques gave complementary data for identifying input sources, and in the development of catchment management plans and environmental remediation strategies.


Assuntos
Acetaldeído/análogos & derivados , Monitoramento Ambiental/métodos , Moluscocidas/análise , Poluentes Químicos da Água/análise , Acetaldeído/análise , Agricultura , Água Potável , Rios , Reino Unido
3.
Talanta ; 179: 57-63, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310277

RESUMO

Metaldehyde is a potent molluscicide. It is the active ingredient in most slug pellets used for crop protection. This polar compound is considered an emerging pollutant. Due to its environmental mobility, metaldehyde is frequently detected at impacted riverine sites, often at concentrations above the EU Drinking Water Directive limit of 0.1µgL-1 for an individual pesticide. This presents a problem when such waters are abstracted for use in the production of potable water supplies, as this chemical is difficult to remove using conventional treatment processes. Understanding the sources, transport and fate of this pollutant in river catchments is therefore important. We developed a new variant of the Chemcatcher® passive sampler for monitoring metaldehyde comprising a Horizon Atlantic™ HLB-L disk as the receiving phase overlaid with a polyethersulphone membrane. The sampler uptake rate (Rs) was measured in semi-static laboratory (Rs = 15.7mLday-1) and in-field (Rs = 17.8mLday-1) calibration experiments. Uptake of metaldehyde was linear over a two-week period, with no measurable lag phase. Field trials (five consecutive 14day periods) using the Chemcatcher® were undertaken in eastern England at three riverine sites (4th September-12th November 2015) known to be impacted by the seasonal agricultural use of metaldehyde. Spot samples of water were collected regularly during the deployments, with concentrations of metaldehyde varying widely (~ 0.03-2.90µgL-1) and often exceeding the regulatory limit. Time weighted average concentrations obtained using the Chemcatcher® increased over the duration of the trial corresponding to increasing stochastic inputs of metaldehyde into the catchment. Monitoring data obtained from these devices gives complementary information to that obtained by the use of infrequent spot sampling procedures. This information can be used to develop risk assessments and catchment management plans and to assess the effectiveness of any mitigation and remediation strategies.

4.
MethodsX ; 3: 188-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054094

RESUMO

The molluscicide metaldehyde (2,4,6,8-tetramethyl-1,3,5,7-tetraoxocanemetacetaldehyde) is an emerging pollutant. It is frequently detected in surface waters, often above the European Community Drinking Water Directive limit of 0.1 µg/L for a single pesticide. Gas chromatography mass spectrometry (GC-MS) can be used to determine metaldehyde in environmental waters, but this method requires time consuming extraction techniques prior to instrumental analysis. Use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) can overcome this problem. We describe a novel LC-MS/MS method, using a methylamine mobile phase additive, coupled with on-line sample enrichment that allows for the rapid and sensitive measurement of metaldehyde in surface water. Only the methylamine adduct of metaldehyde was formed with other unwanted alkali metal adducts and dimers being suppressed. As considerably less collision energy is required to fragment the methylamine adduct, a five-fold improvement in method sensitivity, compared to a previous method using an ammonium acetate buffer mobile phase was achieved. This new approach offers: •A validated method that meets regulatory requirements for the determination of metaldehyde in surface water.•Improved reliability of quantification over existing LC-MS/MS methods by using stable precursor ions for multiple reaction monitoring.•Low limits of quantification for tap water (4 ng/L) and river water (20 ng/L) using only 800 µL of sample; recoveries > 97%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA