Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Ecol ; 29(13): 2379-2398, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32497342

RESUMO

Gene flow has tremendous importance for local adaptation, by influencing the fate of de novo mutations, maintaining standing genetic variation and driving adaptive introgression. Furthermore, structural variation as chromosomal rearrangements may facilitate adaptation despite high gene flow. However, our understanding of the evolutionary mechanisms impending or favouring local adaptation in the presence of gene flow is still limited to a restricted number of study systems. In this study, we examined how demographic history, shared ancestral polymorphism, and gene flow among glacial lineages contribute to local adaptation to sea conditions in a marine fish, the capelin (Mallotus villosus). We first assembled a 490-Mbp draft genome of M. villosus to map our RAD sequence reads. Then, we used a large data set of genome-wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,310 individuals collected from 31 spawning sites in the northwest Atlantic. We reconstructed the history of divergence among three glacial lineages and showed that they probably diverged from 3.8 to 1.8 million years ago and experienced secondary contacts. Within each lineage, our analyses provided evidence for large Ne and high gene flow among spawning sites. Within the Northwest Atlantic lineage, we detected a polymorphic chromosomal rearrangement leading to the occurrence of three haplogroups. Genotype-environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Our study also suggests that both shared polymorphisms among lineages, resulting from standing genetic variation or introgression, and chromosomal rearrangements may contribute to local adaptation in the presence of high gene flow.


Assuntos
Adaptação Fisiológica , Genoma , Osmeriformes/genética , Adaptação Fisiológica/genética , Animais , Oceano Atlântico , Evolução Biológica , Fluxo Gênico , Osmeriformes/fisiologia , Polimorfismo de Nucleotídeo Único
2.
BMC Genomics ; 15: 403, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24884429

RESUMO

BACKGROUND: American eel (Anguilla rostrata) is one of the few species for which panmixia has been demonstrated at the scale of the entire species. As such, the development of long term local adaptation is impossible. However, both plasticity and spatially varying selection have been invoked in explaining how American eel may cope with an unusual broad scope of environmental conditions. Here, we address this question through transcriptomic analyses and genomic reaction norms of eels from two geographic origins reared in controlled environments. RESULTS: The null hypothesis of no difference in gene expression between eels from the two origins was rejected. Many unique transcripts and two out of seven gene clusters showed significant difference in expression, both at time of capture and after three months of common rearing. Differences in expression were observed at numerous genes representing many functional groups when comparing eels from a same origin reared under different salinity conditions. Plastic response to different rearing conditions varied among gene clusters with three clusters showing significant origin-environment interactions translating into differential genomic norms of reaction. Most genes and functional categories showing differences between origins were previously shown to be differentially expressed in a study comparing transcription profiles between adult European eels acclimated to different salinities. CONCLUSIONS: These results emphasize that while plasticity in expression may be important, there is also a role for local genetic (and/or epigenetic) differences in explaining differences in gene expression between eels from different geographic origins. Such differences match those reported in genetically distinct populations in other fishes, both in terms of the proportion of genes that are differentially expressed and the diversity of biological functions involved. We thus propose that genetic differences between glass eels of different origins caused by spatially varying selection due to local environmental conditions translates into transcriptomic differences (including different genomic norms of reaction) which may in turn explain part of the phenotypic variance observed between different habitats colonized by eels.


Assuntos
Adaptação Biológica/genética , Anguilla/genética , Seleção Genética , Animais , Análise por Conglomerados , Biologia Computacional , Meio Ambiente , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interação Gene-Ambiente , Genômica , Masculino , Anotação de Sequência Molecular , Família Multigênica
3.
Naturwissenschaften ; 101(12): 1041-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25307845

RESUMO

The European eel Anguilla anguilla has shown decreased recruitment in recent decades. Despite increasing efforts to establish species recovery measures, it is unclear if the decline was caused by reduced numbers of reproductive-stage silver eels reaching the spawning area, low early larval survival, or increased larval mortality during migration to recruitment areas. To determine if larval abundances in the spawning area significantly changed over the past three decades, a plankton trawl sampling survey for anguillid leptocephali was conducted in March and April 2011 in the spawning area of the European eel that was designed to directly compare to collections made in the same way in 1983 and 1985. The catch rates of most anguilliform leptocephali were lower in 2011, possibly because of the slightly smaller plankton trawl used, but the relative abundances of European eel and American eel, Anguilla rostrata, leptocephali were much lower in 2011 than in 1983 and 1985 when compared to catches of other common leptocephali. The leptocephali assemblage was the same in 2011 as in previous years, but small larvae of mesopelagic snipe eels, Nemichthys scolopaceus, which spawn sympatrically with anguillid eels, were less abundant. Temperature fronts in the spawning area were also poorly defined compared to previous years. Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawning area.


Assuntos
Enguias/fisiologia , Migração Animal , Animais , Oceanos e Mares , Dinâmica Populacional , Reprodução
4.
Mol Ecol ; 22(7): 1763-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23216918

RESUMO

We performed population genetic analyses on the American eel (Anguilla rostrata) with three main objectives. First, we conducted the most comprehensive analysis of neutral genetic population structure to date to revisit the null hypothesis of panmixia in this species. Second, we used this data to provide the first estimates of contemporary effective population size (Ne ) and to document temporal variation in effective number of breeders (Nb ) in American eel. Third, we tested for statistical associations between temporal variation in the North Atlantic Oscillation (NAO), the effective number of breeders and two indices of recruit abundance. A total of 2142 eels from 32 sampling locations were genotyped with 18 microsatellite loci. All measures of differentiation were essentially zero, and no evidence for significant spatial or temporal genetic differentiation was found. The panmixia hypothesis should thus be accepted for this species. Nb estimates varied by a factor of 23 among 12 cohorts, from 473 to 10,999. The effective population size Ne was estimated at 10,532 (95% CI, 9312-11,752). This study also showed that genetically based demographic indices, namely Nb and allelic richness (Ar), can be used as surrogates for the abundance of breeders and recruits, which were both shown to be positively influenced by variation during high (positive) NAO phases. Thus, long-term genetic monitoring of American glass eels at several sites along the North American Atlantic coast would represent a powerful and efficient complement to census monitoring to track demographic fluctuations and better understand their causes.


Assuntos
Anguilla/classificação , Anguilla/genética , Genética Populacional , Alelos , Animais , Oceano Atlântico , DNA/genética , Frequência do Gene , Loci Gênicos , Variação Genética , Genótipo , Repetições de Microssatélites , América do Norte , Reação em Cadeia da Polimerase , Densidade Demográfica , Reprodução/genética
5.
PLoS One ; 18(5): e0285702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256866

RESUMO

Stable isotopes are an important tool to uncover animal migration. Geographic natal assignments often require categorizing the spatial domain through a nominal approach, which can introduce bias given the continuous nature of these tracers. Stable isotopes predicted over a spatial gradient (i.e., isoscapes) allow a probabilistic and continuous assignment of origin across space, although applications to marine organisms remain limited. We present a new framework that integrates nominal and continuous assignment approaches by (1) developing a machine-learning multi-model ensemble classifier using Bayesian model averaging (nominal); and (2) integrating nominal predictions with continuous isoscapes to estimate the probability of origin across the spatial domain (continuous). We applied this integrated framework to predict the geographic origin of the Northwest Atlantic mackerel (Scomber scombrus), a migratory pelagic fish comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in the US fished regions. The nominal approach based on otolith carbon and oxygen stable isotopes (δ13C/δ18O) yielded high contingent classification accuracy (84.9%). Contingent assignment of unknown-origin samples revealed prevalent, yet highly varied contingent mixing levels (12.5-83.7%) within the US waters over four decades (1975-2019). Nominal predictions were integrated into mackerel-specific otolith oxygen isoscapes developed independently for Canadian and US waters. The combined approach identified geographic nursery hotspots in known spawning sites, but also detected geographic shifts over multi-decadal time scales. This framework can be applied to other marine species to understand migration and connectivity at a high spatial resolution, relevant to management of unit stocks in fisheries and other conservation assessments.


Assuntos
Membrana dos Otólitos , Perciformes , Animais , Membrana dos Otólitos/química , Teorema de Bayes , Canadá , Migração Animal , Isótopos de Oxigênio/análise
6.
Mol Ecol ; 20(7): 1333-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21299662

RESUMO

European eels (Anguilla anguilla) spawn in the remote Sargasso Sea in partial sympatry with American eels (Anguilla rostrata), and juveniles are transported more than 5000 km back to the European and North African coasts. The two species have been regarded as classic textbook examples of panmixia, each comprising a single, randomly mating population. However, several recent studies based on continental samples have found subtle, but significant, genetic differentiation, interpreted as geographical or temporal heterogeneity between samples. Moreover, European and American eels can hybridize, but hybrids have been observed almost exclusively in Iceland, suggesting hybridization in a specific region of the Sargasso Sea and subsequent nonrandom dispersal of larvae. Here, we report the first molecular population genetics study based on analysis of 21 microsatellite loci in larvae of both Atlantic eel species sampled directly in the spawning area, supplemented by analysis of European glass eel samples. Despite a clear East-West gradient in the overlapping distribution of the two species in the Sargasso Sea, we only observed a single putative hybrid, providing evidence against the hypothesis of a wide marine hybrid zone. Analyses of genetic differentiation, isolation by distance, isolation by time and assignment tests provided strong evidence for panmixia in both the Sargasso Sea and across all continental samples of European eel after accounting for the presence of sibs among newly hatched larvae. European eel has declined catastrophically, and our findings call for management of the species as a single unit, necessitating coordinated international conservation efforts.


Assuntos
Anguilla/genética , Variação Genética , Hibridização Genética , Reprodução , Migração Animal , Animais , Repetições de Microssatélites , Oceanos e Mares
7.
Sci Rep ; 11(1): 6667, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758255

RESUMO

The Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic is comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in US fished regions. Thus, assessment and management of this population can be sensitive to levels of mixing between contingents, which remain unknown. Multi-decadal trends in contingent mixing levels within the US fisheries region were assessed, and the contingent composition across seasons, locations, ages, and size classes were characterized using archived otoliths and developing a classification baseline based on juvenile otolith carbon and oxygen stable isotopes (δ13C/δ18O values). Classification of age ≥ 2 adults demonstrated that northern contingent mixing was prevalent within the US continental shelf waters during the past 2 decades (2000-2019), providing an important seasonal subsidy to the US winter fishery despite substantial depletion in spawning stock biomass of the dominant northern contingent. While the majority of older fish were of the northern contingent during the early 2000s, the southern contingent contribution increased with age/size class during the recent period (2013-2019). Spatial mixing was most prevalent during February and March when the northern contingent occurred as far south as the Delmarva Peninsula, but were mostly absent from US waters in May. A positive relationship (albeit not significant; r = 0.60, p = 0.07) occurred between northern contingent mixing and US fisheries landings, which could imply that higher contingent mixing levels might be associated with greater landings for the US winter mackerel fishery. The yield of the Northwest Atlantic mackerel depends upon the status of the northern contingent, with the southern contingent possibly more prone to depletion. Spatially explicit stock assessment models are recommended to conserve both productivity and stability in this two-component population.


Assuntos
Migração Animal , Pesqueiros , Perciformes , Animais , Oceano Atlântico , Geografia , Isótopos de Oxigênio , Dinâmica Populacional , Estações do Ano
8.
Proc Biol Sci ; 277(1700): 3593-9, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20573625

RESUMO

Anguillid freshwater eels show remarkable life histories. In the Atlantic, the European eel (Anguilla anguilla) and American eel (Anguilla rostrata) undertake extensive migrations to spawn in the oceanic Sargasso Sea, and subsequently the offspring drift to foraging areas in Europe and North America, first as leaf-like leptocephali larvae that later metamorphose into glass eels. Since recruitment of European and American glass eels has declined drastically during past decades, there is a strong demand for further understanding of the early, oceanic phase of their life cycle. Consequently, during a field expedition to the eel spawning sites in the Sargasso Sea, we carried out a wide range of dedicated bio-physical studies across areas of eel larval distribution. Our findings suggest a key role of oceanic frontal processes, retaining eel larvae within a zone of enhanced feeding conditions and steering their drift. The majority of the more westerly distributed American eel larvae are likely to follow a westerly/northerly drift route entrained in the Antilles/Florida Currents. European eel larvae are generally believed to initially follow the same route, but their more easterly distribution close to the eastward flowing Subtropical Counter Current indicates that these larvae could follow a shorter, eastward route towards the Azores and Europe. The findings emphasize the significance of oceanic physical-biological linkages in the life-cycle completion of Atlantic eels.


Assuntos
Anguilla/crescimento & desenvolvimento , Anguilla/fisiologia , Migração Animal , Movimentos da Água , Animais , Oceano Atlântico , Europa (Continente) , Larva/crescimento & desenvolvimento , Larva/fisiologia , Biologia Marinha , América do Norte , Oceanos e Mares , Reprodução
9.
Biol Lett ; 6(6): 819-22, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573615

RESUMO

European eels (Anguilla anguilla) undertake spawning migrations of more than 5000 km from continental Europe and North Africa to frontal zones in the Sargasso Sea. Subsequently, the larval offspring are advected by large-scale eastward ocean currents towards continental waters. However, the Sargasso Sea is oligotrophic, with generally low plankton biomass, and the feeding biology of eel larvae has so far remained a mystery, hampering understanding of this peculiar life history. DNA barcoding of gut contents of 61 genetically identified A. anguilla larvae caught in the Sargasso Sea showed that even the smallest larvae feed on a striking variety of plankton organisms, and that gelatinous zooplankton is of fundamental dietary importance. Hence, the specific plankton composition seems essential for eel larval feeding and growth, suggesting a linkage between eel survival and regional plankton productivity. These novel insights into the prey of Atlantic eels may furthermore facilitate eel larval rearing in aquaculture, which ultimately may replace the unsustainable use of wild-caught glass eels.


Assuntos
Anguilla/fisiologia , Anguilla/crescimento & desenvolvimento , Animais , Oceano Atlântico , Código de Barras de DNA Taxonômico , Dieta , Sistema Digestório/química , Cadeia Alimentar , Larva/crescimento & desenvolvimento , Larva/fisiologia , Plâncton/genética , Plâncton/isolamento & purificação , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/isolamento & purificação , Zooplâncton/genética , Zooplâncton/isolamento & purificação
10.
Sci Rep ; 10(1): 16064, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999410

RESUMO

Recruitment is one of the dominant processes regulating fish population productivity. It is, however, notoriously difficult to predict, as it is the result of a complex multi-step process. Various fine-scale drivers might act on the pathway from adult population characteristics to spawning behaviour and egg production, and then to recruitment. Here, we provide a holistic analysis of the Northwest Atlantic mackerel recruitment process from 1982 to 2017 and exemplify why broad-scale recruitment-environment relationships could become unstable over time. Various demographic and environmental drivers had a synergetic effect on recruitment, but larval survival through a spatio-temporal match with prey was shown to be the key process. Recruitment was also mediated by maternal effects and a parent-offspring fitness trade-off due to the different feeding regimes of adults and larvae. A mismatch curtails the effects of high larval prey densities, so that despite the abundance of food in recent years, recruitment was relatively low and the pre-existing relationship with overall prey abundance broke down. Our results reaffirm major recruitment hypotheses and demonstrate the importance of fine-scale processes along the recruitment pathway, helping to improve recruitment predictions and potentially fisheries management.


Assuntos
Pesqueiros , Peixes , Animais , Oceano Atlântico , Canadá , Feminino , Pesqueiros/história , Pesqueiros/organização & administração , Pesqueiros/estatística & dados numéricos , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Cadeia Alimentar , História do Século XX , História do Século XXI , Larva/crescimento & desenvolvimento , Masculino , Modelos Biológicos , Perciformes/crescimento & desenvolvimento , Perciformes/fisiologia , Dinâmica Populacional/história , Reprodução/fisiologia
11.
PLoS One ; 14(9): e0222472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545816

RESUMO

The true spatiotemporal structure of a fish population is often more complex than represented in assessments because movement between spawning components is disregarded and data at the necessary scale are unavailable. This can generate poor advice. We explore the impacts of modelling choices and their associated risks given limited data and lack of biological knowledge on spawning component structure and connectivity. Pseudo-data for an age structured fish population were simulated with two spawning components that experience various levels of connectivity and that might overlap during a certain period but segregate during reproduction. A variety of implicit spatiotemporal and simpler models were fitted to the pseudo-datasets, mimicking different situations of data availability. To reproduce the true stock characteristics, the spatiotemporal models required total catch data disaggregated by spawning component; however, catch-at-age was not as important nor were disaggregated biomass indices to reproduce true dynamics. Even with just 5% connectivity between spawning components, both the spatiotemporal models and simpler alternatives generally overestimated stock biomass. Although bias was smallest when considering one unit population, spawning components might still need to be considered for management and conservation. In such case, the spatiotemporal model was less influenced by ignored connectivity patterns compared to a model focussing on one spawning component only.


Assuntos
Pesqueiros , Animais , Peixes/fisiologia , Modelos Estatísticos , Dinâmica Populacional , Reprodução , Estações do Ano , Análise Espaço-Temporal
12.
Curr Biol ; 27(18): R998-R1000, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28950093

RESUMO

European eels (Anguilla anguilla) migrate between the southwestern Sargasso Sea and the European and Mediterranean coasts. In a recent paper in Current Biology, Naisbett-Jones et al.[1] claim to "provide the first evidence that they [eels] derive positional information from the Earth's magnetic field" and that this information guides their migration. The evidence reported by Naisbett-Jones et al.[1] in support of this conclusion was derived from eels collected in the Severn River (UK), approximately 50 km upstream of the estuary (i.e. not "in the Severn Estuary" as stated by the authors). Eels collected this far into rivers are benthic and fully adapted to freshwater; that is, they are late-stage glass eels (∼ 2 years old), not the pelagic leptocephalus (larval) life stage that actually undertakes the trans-Atlantic migration. The entire interpretive framework for the Naisbett-Jones et al.[1] study rests on the assumption that the behaviour of these late-stage freshwater glass eels, and their responses to magnetic fields, can be used as a proxy for the responses of eel leptocephali. The authors present no evidence in support of this key assumption.


Assuntos
Anguilla , Animais , Planeta Terra , Enguias , Larva , Campos Magnéticos , Rios
13.
Nat Commun ; 6: 8705, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26505325

RESUMO

Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues.


Assuntos
Anguilla/fisiologia , Migração Animal , Animais , Feminino , Masculino , Oceanos e Mares , Natação
14.
Biol Rev Camb Philos Soc ; 90(4): 1035-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25291986

RESUMO

The spawning areas of the Atlantic freshwater eels were discovered about a century ago by the Danish scientist Johannes Schmidt who after years of searching found newly hatched larvae of the European eel, Anguilla anguilla, and the American eel, Anguilla rostrata, in the southern Sargasso Sea. The discovery showed that anguillid eels migrate thousands of kilometers to offshore spawning areas for reproduction, and that their larvae, called leptocephali, are transported equally long distances by ocean currents to their continental recruitment areas. The spawning sites were found to be related to oceanographic conditions several decades later by German and American surveys from 1979 to 1989 and by a Danish survey in 2007 and a German survey in 2011. All these later surveys showed that spawning occurred within a restricted latitudinal range, between temperature fronts within the Subtropical Convergence Zone of the Sargasso Sea. New data and re-examinations of Schmidt's data confirmed his original conclusions about the two species having some overlap in spawning areas. Although there have been additional collections of leptocephali in various parts of the North Atlantic, and both otolith research and transport modelling studies have subsequently been carried out, there is still a range of unresolved questions about the routes of larval transport and durations of migration. This paper reviews the history and basic findings of surveys for anguillid leptocephali in the North Atlantic and analyses a new comprehensive database that includes 22612 A. anguilla and 9634 A. rostrata leptocephali, which provides a detailed view of the spatial and temporal distributions and size of the larvae across the Atlantic basin and in the Mediterranean Sea. The differences in distributions, maximum sizes, and growth rates of the two species of larvae are likely linked to the contrasting migration distances to their recruitment areas on each side of the basin. Anguilla rostrata leptocephali originate from a more western spawning area, grow faster, and metamorphose at smaller sizes of <70 mm than the larvae of A. anguilla, which mostly are spawned further east and can reach sizes of almost 90 mm. The larvae of A. rostrata spread west and northwest from the spawning area as they grow larger, with some being present in the western Caribbean and eastern Gulf of Mexico. Larvae of A. anguilla appear to be able to reach Europe by entering the Gulf Stream system or by being entrained into frontal countercurrents that transport them directly northeastward. The larval duration of A. anguilla is suggested to be quite variable, but gaps in sampling effort prevent firm conclusions. Although knowledge about larval behaviour is lacking, some influences of directional swimming are implicated by the temporal distributions of the largest larvae. Ocean-atmosphere changes have been hypothesized to affect the survival of the larvae and cause reduced recruitment, so even after about a century following the discovery of their spawning areas, mysteries still remain about the marine life histories of the Atlantic eels.


Assuntos
Distribuição Animal/fisiologia , Enguias/fisiologia , Animais , Oceano Atlântico , Larva/fisiologia , Reprodução/fisiologia
15.
Curr Biol ; 25(12): 1666-71, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26028437

RESUMO

The two primary ways that species respond to heterogeneous environments is through local adaptation and phenotypic plasticity. The American eel (Anguilla rostrata) presents a paradox; despite inhabiting drastically different environments [1], the species is panmictic [2, 3]. Spawning takes place only in the southern Sargasso Sea in the Atlantic Ocean [1]. Then, the planktonic larvae (leptocephali) disperse to rearing locations from Cuba to Greenland, and juveniles colonize either freshwater or brackish/saltwater habitats, where they spend 3-25 years before returning to the Sargasso Sea to spawn as a panmictic species. Depending on rearing habitat, individuals exhibit drastically different ecotypes [4-6]. In particular, individuals rearing in freshwater tend to grow slowly and mature older and are more likely to be female in comparison to individuals that rear in brackish/saltwater [4, 6]. The hypothesis that phenotypic plasticity alone can account for all of the differences was not supported by three independent controlled experiments [7-10]. Here, we present a genome-wide association study that demonstrates a polygenic basis that discriminates these habitat-specific ecotypes belonging to the same panmictic population. We found that 331 co-varying loci out of 42,424 initially considered were associated with the divergent ecotypes, allowing a reclassification of 89.6%. These 331 SNPs are associated with 101 genes that represent vascular and morphological development, calcium ion regulation, growth and transcription factors, and olfactory receptors. Our results are consistent with divergent natural selection of phenotypes and/or genotype-dependent habitat choice by individuals that results in these genetic differences between habitats, occurring every generation anew in this panmictic species.


Assuntos
Anguilla/genética , Ecótipo , Herança Multifatorial , Animais , Sequência de Bases , Feminino , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Masculino
16.
Ecol Evol ; 2(5): 875-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22837833

RESUMO

During their larval leptocephalus phase, newly hatched American eels undergo an extensive oceanic migration from the Sargasso Sea toward coastal and freshwater habitats. Their subsequent metamorphosis into glass eel is accompanied by drastic morphological and physiological changes preceding settlement over a wide geographic range. The main objective of this study was to compare RNA/DNA ratios and condition factor among glass eels in order to test the null hypothesis of no difference in physiological status and metabolic activity of glass eels at the outcome of their oceanic migration. This was achieved by analyzing glass eel samples collected at the mouth of 17 tributaries covering a latitudinal gradient across the species distribution range from Florida to Gaspésie (Québec). Our main observations were (i) a latitudinal increase in mean total length; (ii) a latitudinal variation in mean RNA/DNA ratios, which was best explained by a quadratic model reaching its minimum in the central range of sampling locations; and (iii) a latitudinal variation in Fulton's condition factor, which was best explained by a quadratic model reaching its maximum in the central range of sampling locations. Below we discuss the possible links between latitudinal variation in glass eel physiological status and variable energetic and environmental constraints to oceanic migration as a function of latitudinal distribution.

17.
PLoS One ; 7(10): e46830, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082131

RESUMO

In an attempt to document the migratory pathways and the environmental conditions encountered by American eels during their oceanic migration to the Sargasso Sea, we tagged eight silver eels with miniature satellite pop-up tags during their migration from the St. Lawrence River in Québec, Canada. Surprisingly, of the seven tags that successfully transmitted archived data, six were ingested by warm-gutted predators, as observed by a sudden increase in water temperature. Gut temperatures were in the range of 20 to 25°C-too cold for marine mammals but within the range of endothermic fish. In order to identify the eel predators, we compared their vertical migratory behavior with those of satellite-tagged porbeagle shark and bluefin tuna, the only endothermic fishes occurring non-marginally in the Gulf of St. Lawrence. We accurately distinguished between tuna and shark by using the behavioral criteria generated by comparing the diving behavior of these two species with those of our unknown predators. Depth profile characteristics of most eel predators more closely resembled those of sharks than those of tuna. During the first days following tagging, all eels remained in surface waters and did not exhibit diel vertical migrations. Three eels were eaten at this time. Two eels exhibited inverse diel vertical migrations (at surface during the day) during several days prior to predation. Four eels were eaten during daytime, whereas the two night-predation events occurred at full moon. Although tagging itself may contribute to increasing the eel's susceptibility to predation, we discuss evidence suggesting that predation of silver-stage American eels by porbeagle sharks may represent a significant source of mortality inside the Gulf of St. Lawrence and raises the possibility that eels may represent a reliable, predictable food resource for porbeagle sharks.


Assuntos
Envelhecimento/fisiologia , Migração Animal/fisiologia , Comportamento Predatório/fisiologia , Tubarões/fisiologia , Anguilla , Animais , Meio Ambiente , Estuários , Geografia , Quebeque , Temperatura
18.
Ecol Evol ; 1(4): 459-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22393514

RESUMO

The unique life-history characteristics of North Atlantic catadromous eels have long intrigued evolutionary biologists, especially with respect to mechanisms that could explain their persistence as two ecologically very similar but reproductively and geographically distinct species. Differential developmental schedules during young larval stages have commonly been hypothesized to represent such a key mechanism. We performed a comparative analysis of gene expression by means of microarray experiments with American and European eel leptocephali collected in the Sargasso Sea in order to test the alternative hypotheses of (1) differential timing of gene expression regulation during early development versus (2) species-specific differences in expression of particular genes. Our results provide much stronger support for the former hypothesis since no gene showed consistent significant differences in expression levels between the two species. In contrast, 146 genes showed differential timings of expression between species, although the observed expression level differences between the species were generally small. Consequently, species-specific gene expression regulation seems to play a minor role in species differentiation. Overall, these results show that the basis of the early developmental divergence between the American and European eel is probably influenced by differences in the timing of gene expression regulation for genes involved in a large array of biological functions.

19.
Science ; 325(5948): 1660, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19779192

RESUMO

European eels (Anguilla anguilla) undertake a approximately 5000-kilometer (km) spawning migration from Europe to the Sargasso Sea. The larvae are transported back to European waters by the Gulf Stream and North Atlantic Drift. However, details of the spawning migration remain unknown because tracking eels in the Atlantic Ocean has, so far, eluded study. Recent advances in satellite tracking enable investigation of migratory behavior of large ocean-dwelling animals. However, sizes of available tags have precluded tracking smaller animals like European eels. Here, we present information about the swimming direction, depth, and migratory behavior of European eels during spawning migration, based on a miniaturized pop-up satellite archival transmitter. Although the tagging experiment fell short of revealing the full migration to the Sargasso Sea, the data covered the first 1300 km and provided unique insights.


Assuntos
Anguilla/fisiologia , Migração Animal , Natação , Animais , Oceano Atlântico , Regulação da Temperatura Corporal , Ecossistema , Europa (Continente) , Reprodução , Temperatura , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA