Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(52): 26823-26834, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31826955

RESUMO

Forkhead box A1 (FOXA1) is a pioneer factor that facilitates chromatin binding and function of lineage-specific and oncogenic transcription factors. Hyperactive FOXA1 signaling due to gene amplification or overexpression has been reported in estrogen receptor-positive (ER+) endocrine-resistant metastatic breast cancer. However, the molecular mechanisms by which FOXA1 up-regulation promotes these processes and the key downstream targets of the FOXA1 oncogenic network remain elusive. Here, we demonstrate that FOXA1 overexpression in ER+ breast cancer cells drives genome-wide enhancer reprogramming to activate prometastatic transcriptional programs. Up-regulated FOXA1 employs superenhancers (SEs) to synchronize transcriptional reprogramming in endocrine-resistant breast cancer cells, reflecting an early embryonic development process. We identify the hypoxia-inducible transcription factor hypoxia-inducible factor-2α (HIF-2α) as the top high FOXA1-induced SE target, mediating the impact of high FOXA1 in activating prometastatic gene sets and pathways associated with poor clinical outcome. Using clinical ER+/HER2- metastatic breast cancer datasets, we show that the aberrant FOXA1/HIF-2α transcriptional axis is largely nonconcurrent with the ESR1 mutations, suggesting different mechanisms of endocrine resistance and treatment strategies. We further demonstrate the selective efficacy of an HIF-2α antagonist, currently in clinical trials for advanced kidney cancer and recurrent glioblastoma, in reducing the clonogenicity, migration, and invasion of endocrine-resistant breast cancer cells expressing high FOXA1. Our study has uncovered high FOXA1-induced enhancer reprogramming and HIF-2α-dependent transcriptional programs as vulnerable targets for treating endocrine-resistant and metastatic breast cancer.

2.
Cell Rep ; 42(8): 112821, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37467106

RESUMO

Aberrant activation of the forkhead protein FOXA1 is observed in advanced hormone-related cancers. However, the key mediators of high FOXA1 signaling remain elusive. We demonstrate that ectopic high FOXA1 (H-FOXA1) expression promotes estrogen receptor-positive (ER+) breast cancer (BC) metastasis in a xenograft mouse model. Mechanistically, H-FOXA1 reprograms ER-chromatin binding to elicit a core gene signature (CGS) enriched in ER+ endocrine-resistant (EndoR) cells. We identify Secretome14, a CGS subset encoding ER-dependent cancer secretory proteins, as a strong predictor for poor outcomes of ER+ BC. It is elevated in ER+ metastases vs. primary tumors, irrespective of ESR1 mutations. Genomic ER binding near Secretome14 genes is also increased in mutant ER-expressing or mitogen-treated ER+ BC cells and in ER+ metastatic vs. primary tumors, suggesting a convergent pathway including high growth factor receptor signaling in activating pro-metastatic secretome genes. Our findings uncover H-FOXA1-induced ER reprogramming that drives EndoR and metastasis partly via an H-FOXA1/ER-dependent secretome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA