RESUMO
Within a living cell, site-specific DNA-binding proteins need to search the whole genome to find a target of ~10-20 bp. That they find the target, and do so quickly, is vital for the correct functioning of the DNA, and of the cell as a whole. The current understanding is that this search is performed via facilitated diffusion, i.e. by combining three-dimensional bulk diffusion within the cytoplasm or nucleoplasm, with one-dimensional diffusion along the DNA backbone, to which the protein binds non-specifically. After reviewing the standard theory of facilitated diffusion, we discuss in the present article the still rather rare direct computer simulations of this process, focusing on the three-dimensional part of the search, and the effect of DNA looping and the general DNA conformation on its efficiency. We close by highlighting some open questions in this field.