Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Heart Lung Circ ; 30(11): 1675-1680, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479819

RESUMO

Prevention of cardiovascular events and regression of atherosclerotic changes are the primary aims of preventive cardiovascular medicine. Arterial thrombosis is caused by endothelial dysfunction, which disrupts vascular haemostasis. Glucagon-like peptide 1 (GLP-1) receptor agonists have been initially used as glucose lowering agents, but over time have been used for other indications due to their cardiorenal benefit, as well as their benefit in the regression of atherosclerosis process. The aim of this paper is to present the benefits of GLP-1 receptor agonists in the prevention of atherosclerotic changes, in the preservation of brain vascular function, and to show the possible role in the treatment of neurodegenerative diseases.


Assuntos
Aterosclerose , Fármacos Cardiovasculares , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Encéfalo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos
2.
J Biol Chem ; 288(21): 15418-29, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23585562

RESUMO

In Alzheimer disease (AD), the microtubule-associated protein tau is highly phosphorylated and aggregates into characteristic neurofibrillary tangles. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) 1 and 2, members of the sterile 20 family of kinases, have been shown to regulate microtubule stability and organization. Here we show that tau is a good substrate for PSK1 and PSK2 phosphorylation with mass spectrometric analysis of phosphorylated tau revealing more than 40 tau residues as targets of these kinases. Notably, phosphorylated residues include motifs located within the microtubule-binding repeat domain on tau (Ser-262, Ser-324, and Ser-356), sites that are known to regulate tau-microtubule interactions. PSK catalytic activity is enhanced in the entorhinal cortex and hippocampus, areas of the brain that are most susceptible to Alzheimer pathology, in comparison with the cerebellum, which is relatively spared. Activated PSK is associated with neurofibrillary tangles, dystrophic neurites surrounding neuritic plaques, neuropil threads, and granulovacuolar degeneration bodies in AD brain. By contrast, activated PSKs and phosphorylated tau are rarely detectible in immunostained control human brain. Our results demonstrate that tau is a substrate for PSK and suggest that this family of kinases could contribute to the development of AD pathology and dementia.


Assuntos
Doença de Alzheimer/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Motivos de Aminoácidos , Animais , Células COS , Cerebelo/metabolismo , Cerebelo/patologia , Chlorocebus aethiops , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , MAP Quinase Quinase Quinases/genética , Masculino , Neurônios/patologia , Fosforilação/genética , Proteínas Serina-Treonina Quinases , Proteínas tau/genética
3.
J Biol Chem ; 287(40): 33304-13, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22879596

RESUMO

The amyloid ß (Aß) peptide, which is abundantly found in the brains of patients suffering from Alzheimer disease, is central in the pathogenesis of this disease. Therefore, to understand the processing of the amyloid precursor protein (APP) is of critical importance. Recently, we demonstrated that the metalloprotease meprin ß cleaves APP and liberates soluble N-terminal APP (N-APP) fragments. In this work, we present evidence that meprin ß can also process APP in a manner reminiscent of ß-secretase. We identified cleavage sites of meprin ß in the amyloid ß sequence of the wild type and Swedish mutant of APP at positions p1 and p2, thereby generating Aß variants starting at the first or second amino acid residue. We observed even higher kinetic values for meprin ß than BACE1 for both the wild type and the Swedish mutant APP form. This enzymatic activity of meprin ß on APP and Aß generation was also observed in the absence of BACE1/2 activity using a ß-secretase inhibitor and BACE knock-out cells, indicating that meprin ß acts independently of ß-secretase.


Assuntos
Peptídeos beta-Amiloides/química , Metaloendopeptidases/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/metabolismo , Catálise , Células HEK293 , Humanos , Ácidos Hidroxâmicos/química , Cinética , Metaloproteases/química , Dados de Sequência Molecular , Mutação , Peptídeos/química , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteômica/métodos
4.
J Biol Chem ; 286(31): 27741-50, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21646356

RESUMO

Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin ß is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin ß and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin ß. Processing of APP by meprin ß was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin ß(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin ß is a physiologically relevant enzyme in APP processing.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Tiopronina/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Sequência de Bases , Encéfalo/enzimologia , Linhagem Celular , Primers do DNA , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
J Alzheimers Dis ; 77(1): 375-386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804133

RESUMO

BACKGROUND: Alzheimer's disease is a complex disorder of unclear etiology that develops in the elderly population. It is a debilitating, progressive neurodegeneration for which disease-modifying therapies do not exist. Previous studies have suggested that, for a subset of patients, dysregulation in hemostasis might be one of the molecular mechanisms that ultimately leads to the development of neurodegeneration resulting in cognitive decline that represents the most prominent symptomatic characteristic of Alzheimer's disease. OBJECTIVE: To examine a relationship between factors that are part of coagulation and anticoagulation pathways with cognitive decline that develops during Alzheimer's disease. METHODS: SOMAscan assay was used to measure levels of coagulation/anticoagulation factors V, VII, IX, X, Xa, XI, antithrombin III, protein S, protein C, and activated protein C in plasma samples obtained from three groups of subjects: 1) subjects with stable cognitively healthy function, 2) subjects with stable mild cognitive impairment, and 3) subjects diagnosed with probable Alzheimer's disease. RESULTS: Our results show that protein levels of coagulation factor XI are significantly increased in patients who are diagnosed with probable Alzheimer's disease compared with cognitively healthy subjects or patients diagnosed with mild cognitive impairment. Furthermore, our results demonstrate that significant predictors of Alzheimer's-type diagnosis are factors IX and XI-an increase in both factors is associated with a reduction in cognitive function. CONCLUSION: Our study justifies further investigations of biological pathways involving coagulation/anticoagulation factors in relation to dementia, including dementia resulting from Alzheimer's-type neurodegeneration.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Bases de Dados Factuais , Fator XI/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino
6.
Biochem Biophys Res Commun ; 386(1): 257-62, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19523444

RESUMO

As impaired insulin signalling (IIS) is a risk factor for Alzheimer's disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2(-/-)) mice which develop insulin resistance. The resulting Tg2576/Irs2(-/-) animals had increased tau phosphorylation but a paradoxical amelioration of Abeta pathology. An increase of the Abeta binding protein transthyretin suggests that increased clearance of Abeta underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes-a reduction in aggregated Abeta but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Memória , Doença de Alzheimer/metabolismo , Animais , Deleção de Genes , Hipocampo/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas tau/metabolismo
7.
PLoS One ; 14(2): e0212261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763368

RESUMO

Alzheimer's disease represents the most common age-related neurodegenerative disorder and a leading cause of progressive cognitive impairment. Predicting cognitive decline is challenging but would be invaluable in an increasingly aging population which also experiences a rising cardiovascular risk. In order to examine whether plasma measurements of one of the established biomarkers of heart failure, brain natriuretic peptide (BNP), reflect a decline in cognitive function, associated with Alzheimer's disease neurodegeneration, BNP levels were analysed, by using a novel assay called a SOMAscan, in 1. cognitively healthy, control subjects; 2. subjects with mild cognitive impairment, and 3. subjects with Alzheimer's disease. The results of our study show that the levels of the BNP were significantly different between the three types of diagnoses (p < 0.05), whereby subjects with mild cognitive impairment had the lowest mean BNP value, and healthy subjects had the highest BNP value. Importantly, our results show that the levels of the BNP are influenced by the presence of at least one APOE4 allele in the healthy (p < 0.05) and in the Alzheimer's disease groups of subjects (p < 0.1). As the levels of the BNP appear to be independent of the APOE4 genotype in subjects with mild cognitive impairment, the results of our study support inclusion of measurements of plasma levels of the BNP in the list of the core Alzheimer's disease biomarkers for identification of the mild cognitive impairment group of patients. In addition, the results of our study warrant further investigations into molecular links between Alzheimer's disease-type cognitive decline and cardiovascular disorders.


Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/sangue , Peptídeo Natriurético Encefálico/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Proteômica
8.
PLoS One ; 13(7): e0200344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979789

RESUMO

It is intriguing that a rare, inherited lysosomal storage disorder Niemann-Pick type C (NPC) shares similarities with Alzheimer's disease (AD). We have previously reported an enhanced processing of ß-amyloid precursor protein (APP) by ß-secretase (BACE1), a key enzyme in the pathogenesis of AD, in NPC1-null cells. In this work, we characterized regional and temporal expression and processing of the recently identified BACE1 substrates seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), and APP, in NPC1-/- (NPC1) and NPC1+/+ (wt) mouse brains. We analysed 4-weeks old brains to detect the earliest changes associated with NPC, and 10-weeks of age to identify changes at terminal disease stage. Sez6 and Sez6L were selected due to their predominant cleavage by BACE1, and their potential role in synaptic function that may contribute to presentation of seizures and/or motor impairments in NPC patients. While an enhanced BACE1-cleavage of all three substrates was detected in NPC1 vs. wt-mouse brains at 4-weeks of age, at 10-weeks increased proteolysis by BACE1 was observed for Sez6L in the cortex, hippocampus and cerebellum of NPC1-mice. Interestingly, both APP and Sez6L were found to be expressed in Purkinje neurons and their immunostaining was lost upon Purkinje cell neurodegeneration in 10-weeks old NPC1 mice. Furthermore, in NPC1- vs. wt-mouse primary cortical neurons, both Sez6 and Sez6L showed increased punctuate staining within the endolysosomal pathway as well as increased Sez6L and BACE1-positive puncta. This indicates that a trafficking defect within the endolysosomal pathway may play a key role in enhanced BACE1-proteolysis in NPC disease. Overall, our findings suggest that enhanced proteolysis by BACE1 could be a part of NPC disease pathogenesis. Understanding the basic biology of BACE1 and the functional impact of cleavage of its substrates is important to better evaluate the therapeutic potential of BACE1 against AD and, possibly, NPC disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologia , Proteínas/genética , Proteínas/metabolismo , Proteólise
9.
Cell Signal ; 27(3): 621-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479589

RESUMO

Members of the cyclic-AMP response-element binding protein (CREB) transcription factor family regulate the expression of genes needed for long-term memory formation. Loss of Notch impairs long-term, but not short-term, memory in flies and mammals. We investigated if the Notch-1 (N1) exerts an effect on CREB-dependent gene transcription. We observed that N1 inhibits CREB mediated activation of cyclic-AMP response element (CRE) containing promoters in a γ-secretase-dependent manner. We went on to find that the γ-cleaved N1 intracellular domain (N1ICD) sequesters nuclear CREB1α, inhibits cAMP/PKA-mediated neurite outgrowth and represses the expression of specific CREB regulated genes associated with learning and memory in primary cortical neurons. Similar transcriptional effects were observed with the N2ICD, N3ICD and N4ICDs. Together, these observations indicate that the effects of Notch on learning and memory are, at least in part, via an effect on CREB-regulated gene expression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptor Notch1/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Células HEK293 , Humanos , Memória de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptor Notch1/química , Receptor Notch1/genética , Transcrição Gênica/efeitos dos fármacos
10.
J Neuropathol Exp Neurol ; 62(10): 999-1005, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14575236

RESUMO

The low-density lipoprotein receptor-related protein (LRP), which interacts with the Alzheimer disease (AD) beta-amyloid precursor protein (APP), represents an important pathway in AD pathology. LRP-mediated receptor pathways appear to regulate both the production and the clearance of amyloid beta-protein (Abeta), a principal neuropathological product in AD. Several conflicting studies have examined levels of LRP in AD brains, as well as the relationship between the LRP exon 3 (C766T) polymorphism and LRP levels and/or disease susceptibility. In order to further investigate the role of LRP in AD, we examined well-characterized brain samples collected from subjects with varying degrees of cognitive impairment for LRP protein expression levels as well as for the presence of the LRP exon 3 polymorphism. We found no correlation between LRP levels and either presence of the disease or cognitive decline. In addition, we found no correlation between the LRP exon 3 polymorphism and either AD or LRP levels.


Assuntos
Doença de Alzheimer/metabolismo , Química Encefálica , Encéfalo/metabolismo , Éxons , Genótipo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Western Blotting , Estudos de Coortes , Cisteína/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Polimorfismo Genético , Treonina/genética
11.
PLoS One ; 6(12): e28527, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205954

RESUMO

Peripheral biomarkers of Alzheimer's disease (AD) reflecting early neuropathological change are critical to the development of treatments for this condition. The most widely used indicator of AD pathology in life at present is neuroimaging evidence of brain atrophy. We therefore performed a proteomic analysis of plasma to derive biomarkers associated with brain atrophy in AD. Using gel based proteomics we previously identified seven plasma proteins that were significantly associated with hippocampal volume in a combined cohort of subjects with AD (N = 27) and MCI (N = 17). In the current report, we validated this finding in a large independent cohort of AD (N = 79), MCI (N = 88) and control (N = 95) subjects using alternative complementary methods-quantitative immunoassays for protein concentrations and estimation of pathology by whole brain volume. We confirmed that plasma concentrations of five proteins, together with age and sex, explained more than 35% of variance in whole brain volume in AD patients. These proteins are complement components C3 and C3a, complement factor-I, γ-fibrinogen and alpha-1-microglobulin. Our findings suggest that these plasma proteins are strong predictors of in vivo AD pathology. Moreover, these proteins are involved in complement activation and coagulation, providing further evidence for an intrinsic role of these pathways in AD pathogenesis.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Proteínas Sanguíneas/metabolismo , Encéfalo/patologia , Idoso , Atrofia/sangue , Atrofia/patologia , Biomarcadores/sangue , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Tamanho do Órgão , Reprodutibilidade dos Testes
12.
Neurosci Lett ; 485(3): 162-6, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20826196

RESUMO

It is well established that the human brain exhibits regional variability in its vulnerability to Alzheimer's disease (AD) pathology. We set out to determine if this regional vulnerability is reflected in the expression pattern, or processing, of two key proteins involved in AD pathology, the ß-amyloid precursor protein (APP) and tau, by immunoblotting. Our data demonstrate that APP processing and APP protein levels are not different between AD patients and healthy, age-matched subjects, but that levels of mature APP are greatly reduced in cerebellum compared to regions of the brain most vulnerable to AD, entorhinal cortex and hippocampus. In addition, protein levels of tau are significantly reduced in cerebellum compared to all other human brain regions examined. Unexpectedly, protein levels of glycogen synthase kinase 3 (GSK3), a major tau kinase, are at their lowest in hippocampus. The observations demonstrate that both mature APP as well as total APP and tau protein levels are greatly reduced in human cerebellum, a region of the human brain most resistant to AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Química Encefálica/fisiologia , Cerebelo/metabolismo , Degeneração Neural/metabolismo , Proteínas tau/metabolismo , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Insulisina/metabolismo , Masculino , Degeneração Neural/patologia , Testes Neuropsicológicos
13.
Arch Gen Psychiatry ; 67(7): 739-48, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20603455

RESUMO

CONTEXT: Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD). OBJECTIVE: To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach. DESIGN: Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model. SETTING: A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging. PARTICIPANTS: Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging. MAIN OUTCOME MEASURES: Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid. RESULTS: Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-beta burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques. CONCLUSIONS: These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.


Assuntos
Doença de Alzheimer/sangue , Clusterina/sangue , Idoso , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/genética , Animais , Atrofia/patologia , Encéfalo/patologia , Clusterina/genética , Transtornos Cognitivos/sangue , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Progressão da Doença , Córtex Entorrinal/patologia , Feminino , Expressão Gênica , Genótipo , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/sangue , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Índice de Gravidade de Doença
14.
Mol Neurodegener ; 2: 23, 2007 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-18067682

RESUMO

BACKGROUND: Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as alpha-secretase(s). However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. RESULTS: Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Rossner et al (2004), phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPalpha. CONCLUSION: Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA