RESUMO
Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.
Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Fluorocarbonos , Animais , Estrogênios/metabolismo , Estrona/metabolismo , Ácidos Alcanossulfônicos/metabolismoRESUMO
Monitoring of the Colorado River near the Moab, Utah, wastewater treatment plant (WWTP) outflow has detected pharmaceuticals, hormones, and estrogen-receptor (ER)-, glucocorticoid receptor (GR)-, and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated biological activities. The aim of the present multi-year study was to assess effects of a WWTP replacement on bioactive chemical (BC) concentrations. Water samples were collected bimonthly, pre- and post-replacement, at 11 sites along the Colorado River upstream and downstream of the WWTP and analyzed for in vitro bioactivities (e.g., agonism of ER, GR, and PPARγ) and BC concentrations; fathead minnows were cage deployed pre- and post-replacement at sites with varying proximities to the WWTP. Before the WWTP replacement, in vitro ER (24 ng 17ß-estradiol equivalents/L)-, GR (60 ng dexamethasone equivalents/L)-, and PPARγ-mediated activities were detected at the WWTP outflow but diminished downstream. In March 2018, the WWTP effluent was acutely toxic to the fish, likely due to elevated ammonia concentrations. Following the WWTP replacement, ER, GR, and PPARγ bioactivities were reduced by approximately 60-79%, no toxicity was observed in caged fish, and there were marked decreases in concentrations of many BCs. Results suggest that replacement of the Moab WWTP achieved a significant reduction in BC concentrations to the Colorado River.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Colorado , Monitoramento Ambiental , Utah , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.
Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos , Poluentes Ambientais , Animais , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Peixes , Medição de Risco , Hormônios TireóideosRESUMO
The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33â¯days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and ß). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.
Assuntos
Cyprinidae/embriologia , Cyprinidae/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Glândula Tireoide/metabolismo , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Desenvolvimento Embrionário , Proteínas de Peixes/metabolismo , Larva/metabolismo , Análise de Componente Principal , Especificidade da EspécieRESUMO
Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17ß-estradiol (ß-E2) and 17α-ethinylestradiol, due both to their prevalence in the environment and strong estrogenic potency. A third steroid, estrone (E1), also can occur at high concentrations in surface waters but generally has been of lesser concern due to its relatively lower affinity for vertebrate estrogen receptors. In an initial experiment, male fathead minnow (Pimephales promelas) adults were exposed for 4-d to environmentally relevant levels of waterborne E1, which resulted in plasma ß-E2 concentrations similar to those found in reproductively active females. In a second exposure we used 13C-labeled E1, together with liquid chromatography-tandem mass spectrometry, to demonstrate that elevated ß-E2 measured in the plasma of the male fish was indeed derived from the external environment, most likely via a conversion catalyzed by one or more 17ß-hydroxysteroid dehydrogenases. The results of our studies suggest that the potential impact of E1 as an environmental estrogen currently is underestimated.
Assuntos
Estrogênios , Estrona , Animais , Cyprinidae/sangue , Exposição Ambiental , Estradiol/sangue , Humanos , MasculinoRESUMO
We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.
Assuntos
Cyprinidae/genética , Águas Residuárias , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Estrona , Feminino , Masculino , Testes de Mutagenicidade , Medição de RiscoRESUMO
Cytochrome P450 aromatase catalyzes conversion of C19 androgens to C18 estrogens and is critical for normal reproduction in female vertebrates. Fadrozole is a model aromatase inhibitor that has been shown to suppress estrogen production in the ovaries of fish. However, little is known about the early impacts of aromatase inhibition on steroid production and gene expression in fish. Adult female fathead minnows (Pimephales promelas) were exposed via water to 0, 5, or 50µg fadrozole/L for a time-course of 0.5, 1, 2, 4, and 6h, or 0 or 50µg fadrozole/L for a time-course of 6, 12, and 24h. We examined ex vivo ovarian 17ß-estradiol (E2) and testosterone (T) production, and plasma E2 concentrations from each study. Expression profiles of genes known or hypothesized to be impacted by fadrozole including aromatase (cytochrome P450 [cyp] 19a1a), steriodogenic acute regulatory protein (star), cytochrome P450 side-chain cleavage (cyp11a), cytochrome P450 17 alpha hydroxylase/17,20 lyase (cyp17), and follicle stimulating hormone receptor (fshr) were measured in the ovaries by quantitative real-time polymerase chain reaction (QPCR). In addition, broader ovarian gene expression was examined using a 15k fathead minnow microarray. The 5µg/L exposure significantly reduced ex vivo E2 production by 6h. In the 50µg/L treatment, ex vivo E2 production was significantly reduced after just 2h of exposure and remained depressed at all time-points examined through 24h. Plasma E2 concentrations were significantly reduced as early as 4h after initiation of exposure to either 5 or 50µg fadrozole/L and remained depressed throughout 24h in the 50µg/L exposure. Ex vivo T concentrations remained unchanged throughout the time-course. Expression of transcripts involved in steroidogenesis increased within the first 24h suggesting rapid induction of a mechanism to compensate for fadrozole inhibition of aromatase. Microarray results also showed fadrozole exposure caused concentration- and time-dependent changes in gene expression profiles in many HPG-axis pathways as early as 4h. This study provides insights into the very rapid effects of aromatase inhibition on steroidogenic processes in fish.
Assuntos
Inibidores da Aromatase/farmacologia , Cyprinidae/genética , Fadrozol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ovário/metabolismo , Esteroides/biossíntese , Animais , Cyprinidae/sangue , Cyprinidae/metabolismo , Estradiol/sangue , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testosterona/sangue , Transcriptoma/genéticaRESUMO
In a previous in vivo study, adult male fathead minnows (Pimephales promelas) were exposed via water for 4 days to 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol). The present study expands on the evaluation of molecular responses to this perfluoro-alcohol by analyzing 26 male fathead minnow liver RNA samples from that study (five from each test concentration: 0, 0.018, 0.051, 0.171, and 0.463 mg FC8-diol/L) using fathead minnow EcoToxChips Ver. 1.0. EcoToxChips are a quantitative polymerase chain reaction array that allows for simultaneous measurement of >375 species-specific genes of toxicological interest. Data were analyzed with the online tool EcoToxXplorer. Among the genes analyzed, 62 and 96 were significantly up- and downregulated, respectively, by one or more FC8-diol treatments. Gene expression results from the previous study were validated, showing an upregulation of vitellogenin mRNA (vtg) and downregulation of insulin-like growth factor 1 mRNA (igf1). Additional genes related to estrogen receptor activation including esr2a (estrogen receptor 2a) and esrrb (estrogen related receptor beta) were also affected, providing further confirmation of the estrogenic nature of FC8-diol. Furthermore, genes involved in biological pathways related to lipid and carbohydrate metabolism, innate immune response, endocrine reproduction, and endocrine thyroid were significantly affected. These results both add confidence in the use of the EcoToxChip tool for inferring chemical mode(s) of action and provide further insights into the possible biological effects of FC8-diol. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
RESUMO
Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.
Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Estuários , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , EcotoxicologiaRESUMO
To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17ß-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Assuntos
Cyprinidae , Ovário , Humanos , Animais , Feminino , Aromatase/genética , Aromatase/metabolismo , Fadrozol/toxicidade , Ecotoxicologia , Ecossistema , Estradiol/metabolismo , Cyprinidae/fisiologia , Vitelogeninas/metabolismoRESUMO
Effects of bisphenol A (BPA) on ovarian transcript profiles as well as targeted end points with endocrine/reproductive relevance were examined in two fish species, fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), exposed in parallel using matched experimental designs. Four days of waterborne exposure to 10 µg BPA/L caused significant vitellogenin induction in both species. However, zebrafish were less sensitive to effects on hepatic gene expression and steroid production than fathead minnow and the magnitude of vitellogenin induction was more modest (i.e., 3-fold compared to 13,000-fold in fathead minnow). The concentration-response at the ovarian transcriptome level was nonmonotonic and violated assumptions that underlie proposed methods for estimating hazard thresholds from transcriptomic results. However, the nonmonotonic profile was consistent among species and there were nominal similarities in the functions associated with the differentially expressed genes, suggesting potential activation of common pathway perturbation motifs in both species. Overall, the results provide an effective case study for considering the potential application of ecotoxicogenomics to ecological risk assessments and provide novel comparative data regarding effects of BPA in fish.
Assuntos
Cyprinidae/genética , Ecotoxicologia/métodos , Metagenômica/métodos , Fenóis/toxicidade , Testes de Toxicidade , Peixe-Zebra/genética , Animais , Compostos Benzidrílicos , Cyprinidae/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reprodutibilidade dos Testes , Medição de Risco , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Vitelogeninas/sangueRESUMO
The complexity of contaminant mixtures in surface waters has presented long-standing challenges to the assessment of risks to human health and the environment. As a result, novel strategies for both identifying contaminants that have not been routinely monitored through targeted methods and prioritizing detected compounds with respect to their biological relevance are needed. Tracking biotransformation products in biofluids and tissues in an untargeted fashion facilitates the identification of chemicals taken up by the resident species (e.g., fish), so by default ensuring that detected compounds are biologically relevant in terms of exposure. In this study, we investigated xenobiotic glucuronidation, which is arguably the most important phase II metabolism pathway for many pharmaceuticals, pesticides, and other environmental contaminants. The application of an untargeted high-resolution mass spectrometry-based approach tentatively revealed the presence of over 70 biologically relevant xenobiotics in bile collected from male and female fathead minnows exposed to wastewater treatment plant effluents. The majority of these were not targets of conventional contaminant monitoring. These results highlight the utility of biologically based untargeted screening methods when evaluating chemical contaminants in complex environmental mixtures.
RESUMO
River water temperatures are increasing globally, particularly in urban systems. In winter, wastewater treatment plant (WWTP) effluent inputs are of particular concern because they increase water temperatures from near freezing to ~7-15 °C. Recent laboratory studies suggest that warm overwinter temperatures impact the reproductive timing of some fishes. To evaluate winter water temperature's influence in the wild, we sampled Johnny Darter Etheostoma nigrum from three urban South Platte River tributaries in Colorado upstream and downstream of WWTP effluent discharge sites. Fish were collected weekly during the spring spawning season of 2021 and reproductive development was determined from histological analysis of the gonads. Winter water temperatures were approximately 5-10 °C greater ~300 m downstream of the WWTP effluent compared to upstream sites, and approximately 3°C warmer at sampling sites ~5000 m downstream of the effluent discharge. Females collected downstream of WWTP effluent experienced accelerated reproductive development compared to upstream by 1-2 weeks. Water quality, including total estrogenicity, and spring water temperatures did not appear to explain varying reproductive development. It appears that small increases in winter water temperature influence the reproductive timing in E. nigrum. Further investigations into how shifts in reproductive timing influence other population dynamics are warranted.
RESUMO
Metformin, along with its biotransformation product guanylurea, is commonly observed in municipal wastewaters and subsequent surface waters. Previous studies in fish have identified metformin as a potential endocrine-active compound, but there are inconsistencies with regard to its effects. To further investigate the potential reproductive toxicity of metformin and guanylurea to fish, a series of experiments was performed with adult fathead minnows (Pimephales promelas). First, explants of fathead minnow ovary tissue were exposed to 0.001-100 µM metformin or guanylurea to investigate whether the compounds could directly perturb steroidogenesis. Second, spawning pairs of fathead minnows were exposed to metformin (0.41, 4.1, and 41 µg/L) or guanylurea (1.0, 10, and 100 µg/L) for 23 days to assess impacts on reproduction. Lastly, male fathead minnows were exposed to 41 µg/L metformin, 100 µg/L guanylurea, or a mixture of both compounds, with samples collected over a 96-h time course to investigate potential impacts to the hepatic transcriptome or metabolome. Neither metformin nor guanylurea affected steroid production by ovary tissue exposed ex vivo. In the 23 days of exposure, neither compound significantly impacted transcription of endocrine-related genes in male liver or gonad, circulating steroid concentrations in either sex, or fecundity of spawning pairs. In the 96-h time course, 100 µg guanylurea/L elicited more differentially expressed genes than 41 µg metformin/L and showed the greatest impacts at 96 h. Hepatic transcriptome and metabolome changes were chemical- and time-dependent, with the largest impact on the metabolome observed at 23 days of exposure to 100 µg guanylurea/L. Overall, metformin and guanylurea did not elicit effects consistent with reproductive toxicity in adult fathead minnows at environmentally relevant concentrations. Environ Toxicol Chem 2022;41:2708-2720. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Assuntos
Cyprinidae , Metformina , Poluentes Químicos da Água , Animais , Feminino , Masculino , Metformina/toxicidade , Águas Residuárias , Poluentes Químicos da Água/análise , ReproduçãoRESUMO
Certain endocrine-active toxicants have been reported to completely sex reverse both male and female individuals in amphibian, avian, fish, invertebrate, and reptile species, resulting in a phenotype indistinguishable from unaffected individuals. Detection of low-level sex reversal often requires large numbers of organisms to achieve the necessary statistical power, especially in those species with predominantly genetic sex determination and cryptic/homomorphic sex chromosomes. Here we describe a method for determining the genetic sex in the commonly used ecotoxicological model, the fathead minnow (Pimephales promelas). Analysis of amplified fragment length polymorphisms (AFLP) in a spawn of minnows resulted in detection of 10 sex-linked AFLPs, which were isolated and sequenced. No recombination events were observed with any sex-linked AFLP in the animals examined (n=112). A polymerase chain reaction (PCR) method was then developed that determined the presence of one of these sex-linked polymorphisms for utilization in routine toxicological testing. Analyses of additional spawns from our in-house culture indicate that fathead minnows utilize a XY sex determination strategy and confirm that these markers can be used to genotype sex; however, this method is currently limited to use in laboratory studies in which breeders possess a defined genetic makeup. The genotyping method described herein can be incorporated into endocrine toxicity assays that examine the effects of chemicals on gonad differentiation.
Assuntos
Cyprinidae/genética , Disruptores Endócrinos/toxicidade , Análise para Determinação do Sexo/métodos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Análise Custo-Benefício , Cyprinidae/fisiologia , Feminino , Genótipo , Masculino , Polimorfismo de Fragmento de Restrição/genética , Análise para Determinação do Sexo/economia , Testes de Toxicidade/métodosRESUMO
Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17ß-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARÉ£ activity, there were no significant effects on PPARÉ£-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Colorado , Monitoramento Ambiental , Feminino , Humanos , Masculino , Rios , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
The present study evaluated whether in vitro measures of aromatase inhibition as inputs into a quantitative adverse outcome pathway (qAOP) construct could effectively predict in vivo effects on 17ß-estradiol (E2) and vitellogenin (VTG) concentrations in female fathead minnows. Five chemicals identified as aromatase inhibitors in mammalian-based ToxCast assays were screened for their ability to inhibit fathead minnow aromatase in vitro. Female fathead minnows were then exposed to 3 of those chemicals: letrozole, epoxiconazole, and imazalil in concentration-response (5 concentrations plus control) for 24 h. Consistent with AOP-based expectations, all 3 chemicals caused significant reductions in plasma E2 and hepatic VTG transcription. Characteristic compensatory upregulation of aromatase and follicle-stimulating hormone receptor (fshr) transcripts in the ovary were observed for letrozole but not for the other 2 compounds. Considering the overall patterns of concentration-response and temporal concordance among endpoints, data from the in vivo experiments strengthen confidence in the qualitative relationships outlined by the AOP. Quantitatively, the qAOP model provided predictions that fell within the standard error of measured data for letrozole but not for imazalil and epoxiconazole. However, the inclusion of measured plasma concentrations of the test chemicals as inputs improved model predictions, with all predictions falling within the range of measured values. Results highlight both the utility and limitations of the qAOP and its potential use in 21st century ecotoxicology. Environ Toxicol Chem 2021;40:1155-1170. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Assuntos
Cyprinidae , Fadrozol , Animais , Aromatase/genética , Ecotoxicologia , Estradiol , Fadrozol/toxicidade , Feminino , Ovário , Vitelogeninas/genéticaRESUMO
Exposure to certain anthropogenic chemicals can inhibit the activity to cytochrome P450 aromatase (CYP19) in fishes leading to decreased plasma 17ß-estradiol (E2), plasma vitellogenin (VTG), and egg production. Reproductive dysfunction resulting from exposure to aromatase inhibitors has been extensively investigated in several laboratory model species of fish. These model species have ovaries that undergo asynchronous oocyte development, but many fishes have ovaries with group-synchronous oocyte development. Fishes with group-synchronous oocyte development have dynamic reproductive cycles which typically occur annually and are often triggered by complex environmental cues. This has resulted in a lack of test data and uncertainty regarding sensitivities to and adverse effects of aromatase inhibition. The present study used the western mosquitofish (Gambusia affinis) as a laboratory model to investigate adverse effects of chemical aromatase inhibition on group-synchronous oocyte development. Adult female western mosquitofish were exposed to either 0, 2, or 30 µg/L of the model nonsteroidal aromatase inhibiting chemical, fadrozole, for a complete reproductive cycle. Fish were sampled at four time-points representing pre-vitellogenic resting, early vitellogenesis, late vitellogenesis/early ovarian recrudescence, and late ovarian recrudescence. Temporal changes in numerous reproductive parameters were measured, including gonadosomatic index (GSI), plasma sex steroids, and expression of selected genes in the brain, liver, and gonad that are important for reproduction. In contrast to fish from the control treatment, fish exposed to 2 and 30 µg/L of fadrozole had persistent elevated expression of cyp19 in the ovary, depressed expression of vtg in the liver, and a low GSI. These responses suggest that completion of a group-synchronous reproductive cycle was unsuccessful during the assay in fish from either fadrozole treatment. These adverse effects data show that exposure to aromatase inhibitors has the potential to cause reproductive dysfunction in a wide range of fishes with both asynchronous and group-synchronous reproductive strategies.
RESUMO
Neurotransmitters such as dopamine play an important role in regulating fish reproduction. However, the potential for neuroendocrine active chemicals to disrupt fish reproduction has not been well studied, despite emerging evidence of their discharge into aquatic environments. This study is the first to apply the fathead minnow 21 d reproduction assay developed for the US Endocrine Disruptor Screening Program to evaluate the reproductive toxicity of a model neuroendocrine active chemical, the dopamine 2 receptor antagonist, haloperidol. Continuous exposure to up to 20 imcrog haloperidol/L had no significant effects on fathead minnow fecundity, secondary sex characteristics, gonad histology, or plasma steroid and vitellogenin concentrations. The only significant effect observed was an increase in gonadotropin-releasing hormone (cGnRH) transcripts in the male brain. Results suggest that non-lethal concentrations of haloperidol do not directly impair fish reproduction. Potential effects of haloperidol on reproductive behaviors and gene expression were examined in a companion study.
Assuntos
Antagonistas de Dopamina/toxicidade , Disruptores Endócrinos/toxicidade , Fertilidade/efeitos dos fármacos , Haloperidol/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Cyprinidae/crescimento & desenvolvimento , Feminino , Hormônios Esteroides Gonadais/sangue , Hormônio Liberador de Gonadotropina/metabolismo , Gônadas/anatomia & histologia , Gônadas/efeitos dos fármacos , Masculino , Caracteres Sexuais , Vitelogeninas/sangueRESUMO
Neurotransmitters such as dopamine play an important role in reproductive behaviors and signaling. Neuroendocrine-active chemicals in the environment have potential to interfere with and/or alter these processes. A companion study with the dopamine 2 receptor antagonist, haloperidol, found no evidence of a direct effect of the chemical on fish reproduction. This study considered haloperidol's potential effects on behavior and ovarian gene expression. Male fathead minnows exposed to 50 microg haloperidol/L for 96 h were found to be significantly more dominant than control males. In terms of molecular signaling, investigated using oligonucleotide microarrays, there was little similarity in the identity and functions of genes differentially expressed in the ovaries of fathead minnows (Pimephales promelas) versus zebrafish (Danio rerio) exposed under the same conditions. Results suggest that non-lethal concentrations of haloperidol do not induce ovarian molecular responses that could serve as biomarkers of exposure to D2R antagonists, but may impact behavior.