Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 16(25): e2001837, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32419312

RESUMO

Stem cells secrete trophic factors that induce angiogenesis. These soluble factors are promising candidates for stem cell-based therapies, especially for cardiovascular diseases. Mechanical stimuli and biophysical factors presented in the stem cell microenvironment play important roles in guiding their behaviors. However, the complex interplay and precise role of these cues in directing pro-angiogenic signaling remain unclear. Here, a platform is designed using gelatin methacryloyl hydrogels with tunable rigidity and a dynamic mechanical compression bioreactor to evaluate the influence of matrix rigidity and mechanical stimuli on the secretion of pro-angiogenic factors from human mesenchymal stem cells (hMSCs). Cells cultured in matrices mimicking mechanical elasticity of bone tissues in vivo show elevated secretion of vascular endothelial growth factor (VEGF), one of representative signaling proteins promoting angiogenesis, as well as increased vascularization of human umbilical vein endothelial cells (HUVECs) with a supplement of conditioned media from hMSCs cultured across different conditions. When hMSCs are cultured in matrices stimulated with a range of cyclic compressions, increased VEGF secretion is observed with increasing mechanical strains, which is also in line with the enhanced tubulogenesis of HUVECs. Moreover, it is demonstrated that matrix stiffness and cyclic compression modulate secretion of pro-angiogenic molecules from hMSCs through yes-associated protein activity.


Assuntos
Células-Tronco Mesenquimais , Células Cultivadas , Sinais (Psicologia) , Meios de Cultivo Condicionados , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular
2.
Small ; 15(15): e1900300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30884183

RESUMO

Cells secrete substances that are essential to the understanding of numerous immunological phenomena and are extensively used in clinical diagnoses. Countless techniques for screening of biomarker secretion in living cells have generated valuable information on cell function and physiology, but low volume and real-time analysis is a bottleneck for a range of approaches. Here, a simple, highly sensitive assay using a high-throughput micropillar and microwell array chip (MIMIC) platform is presented for monitoring of biomarkers secreted by cancer cells. The sensing element is a micropillar array that uses the enzyme-linked immunosorbent assay (ELISA) mechanism to detect captured biomolecules. When integrated with a microwell array where few cells are localized, interleukin 8 (IL-8) secretion can be monitored with nanoliter volume using multiple micropillar arrays. The trend of cell secretions measured using MIMICs matches the results from conventional ELISA well while it requires orders of magnitude less cells and volumes. Moreover, the proposed MIMIC is examined to be used as a drug screening platform by delivering drugs using micropillar arrays in combination with a microfluidic system and then detecting biomolecules from cells as exposed to drugs.


Assuntos
Biomarcadores/análise , Ensaios de Triagem em Larga Escala/métodos , Microtecnologia/métodos , Animais , Anticorpos/análise , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA