Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38897662

RESUMO

MOTIVATION: Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. RESULTS: In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. AVAILABILITY AND IMPLEMENTATION: Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.


Assuntos
Ribossomos , Software , Ribossomos/metabolismo , Biologia Computacional/métodos , Perfil de Ribossomos
2.
Mol Syst Biol ; 20(5): 481-505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355921

RESUMO

Multiplexed assays of variant effect are powerful methods to profile the consequences of rare variants on gene expression and organismal fitness. Yet, few studies have integrated several multiplexed assays to map variant effects on gene expression in coding sequences. Here, we pioneered a multiplexed assay based on polysome profiling to measure variant effects on translation at scale, uncovering single-nucleotide variants that increase or decrease ribosome load. By combining high-throughput ribosome load data with multiplexed mRNA and protein abundance readouts, we mapped the cis-regulatory landscape of thousands of catechol-O-methyltransferase (COMT) variants from RNA to protein and found numerous coding variants that alter COMT expression. Finally, we trained machine learning models to map signatures of variant effects on COMT gene expression and uncovered both directional and divergent impacts across expression layers. Our analyses reveal expression phenotypes for thousands of variants in COMT and highlight variant effects on both single and multiple layers of expression. Our findings prompt future studies that integrate several multiplexed assays for the readout of gene expression.


Assuntos
Catecol O-Metiltransferase , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Biossíntese de Proteínas
3.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026828

RESUMO

Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA promises the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N6-methyladenosine (m6A) modifications in native mRNA. We utilized human and mouse cells with known genetic variants to assign allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses revealed the importance of sequences adjacent to the DRACH-motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discovered allele-specific m6A modification (ASM) events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long reads and surpassing the capabilities of antibody-based short-read approaches. This technological advancement promises to advance our understanding of the role of genetics in determining mRNA modifications.

4.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260303

RESUMO

Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type and eliminates the need for data preprocessing. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. Availability and Implementation: Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.

5.
bioRxiv ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39149337

RESUMO

The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5' UTR sequence, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5' UTR, CDS, and 3' UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5' UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.

6.
iScience ; 27(2): 108820, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303729

RESUMO

ISG15 is a type I interferon-induced ubiquitin-like modifier that functions in innate immune responses. The major human ISG15 ligase is hHERC5, a ribosome-associated HECT E3 that broadly ISGylates proteins cotranslationally. Here, we characterized the hHERC5-dependent ISGylome and identified over 2,000 modified lysines in over 1,100 proteins in IFN-ß-stimulated cells. In parallel, we compared the substrate selectivity hHERC5 to the major mouse ISG15 ligase, mHERC6, and analysis of sequences surrounding ISGylation sites revealed that hHERC5 and mHERC6 have distinct preferences for amino acid sequence context. Several features of the datasets were consistent with ISGylation of ribosome-tethered nascent chains, and mHERC6, like hHERC5, cotranslationally modified nascent polypeptides. The ISGylome datasets presented here represent the largest numbers of protein targets and modification sites attributable to a single Ub/Ubl ligase and the lysine selectivities of the hHERC5 and mHERC6 enzymes may have implications for the activities of HECT domain ligases, generally.

7.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38659761

RESUMO

The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.

8.
bioRxiv ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39149359

RESUMO

Characterization of shared patterns of RNA expression between genes across conditions has led to the discovery of regulatory networks and novel biological functions. However, it is unclear if such coordination extends to translation, a critical step in gene expression. Here, we uniformly analyzed 3,819 ribosome profiling datasets from 117 human and 94 mouse tissues and cell lines. We introduce the concept of Translation Efficiency Covariation (TEC), identifying coordinated translation patterns across cell types. We nominate potential mechanisms driving shared patterns of translation regulation. TEC is conserved across human and mouse cells and helps uncover gene functions. Moreover, our observations indicate that proteins that physically interact are highly enriched for positive covariation at both translational and transcriptional levels. Our findings establish translational covariation as a conserved organizing principle of mammalian transcriptomes.

9.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260472

RESUMO

Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA