Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cladistics ; 40(3): 307-356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38771085

RESUMO

Gondwanan dinosaur faunae during the 20 Myr preceding the Cretaceous-Palaeogene (K/Pg) extinction included several lineages that were absent or poorly represented in Laurasian landmasses. Among these, the South American fossil record contains diverse abelisaurids, arguably the most successful groups of carnivorous dinosaurs from Gondwana in the Cretaceous, reaching their highest diversity towards the end of this period. Here we describe Koleken inakayali gen. et sp. n., a new abelisaurid from the La Colonia Formation (Maastrichtian, Upper Cretaceous) of Patagonia. Koleken inakayali is known from several skull bones, an almost complete dorsal series, complete sacrum, several caudal vertebrae, pelvic girdle and almost complete hind limbs. The new abelisaurid shows a unique set of features in the skull and several anatomical differences from Carnotaurus sastrei (the only other abelisaurid known from the La Colonia Formation). Koleken inakayali is retrieved as a brachyrostran abelisaurid, clustered with other South American abelisaurids from the latest Cretaceous (Campanian-Maastrichtian), such as Aucasaurus, Niebla and Carnotaurus. Leveraging our phylogeny estimates, we explore rates of morphological evolution across ceratosaurian lineages, finding them to be particularly high for elaphrosaurine noasaurids and around the base of Abelisauridae, before the Early Cretaceous radiation of the latter clade. The Noasauridae and their sister clade show contrasting patterns of morphological evolution, with noasaurids undergoing an early phase of accelerated evolution of the axial and hind limb skeleton in the Jurassic, and the abelisaurids exhibiting sustained high rates of cranial evolution during the Early Cretaceous. These results provide much needed context for the evolutionary dynamics of ceratosaurian theropods, contributing to broader understanding of macroevolutionary patterns across dinosaurs.


Assuntos
Evolução Biológica , Dinossauros , Fósseis , Filogenia , Animais , Dinossauros/anatomia & histologia , Dinossauros/classificação , Crânio/anatomia & histologia , Argentina
2.
J Anat ; 243(4): 579-589, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059589

RESUMO

Pterosaurs are an extinct group of Mesozoic flying reptiles, which exhibited high diversity with regard to their dentition. Although morphological features of pterosaur dentition have been described in detail in several contributions, the histology of tooth and tooth attachment tissues (i.e. periodontium) has been scarcely analysed to date for this clade. Here we describe and interpret the microstructure of the tooth and periodontium attachment tissues of Pterodaustro guinazui, a filter-feeding pterodactyloid pterosaur from the Lower Cretaceous of Argentina. The histological analysis of the lower jaw and its filamentous teeth verifies that the geometry of the implantation corresponds to an aulacodont condition (i.e. teeth are set in a groove with no interdental separation). This pattern departs from that recorded in other archosaurs, being possibly also present in other, non-closely related, pterosaurs. Regarding tooth attachment, in contrast to other pterosaurs, there is no direct evidence for gomphosis in Pterodaustro (i.e. the absence of cementum, mineralized periodontal ligamentum and alveolar bone). Nevertheless, the current evidence for ankylosis is still not conclusive. Contrary to that reported for other archosaurs, replacement teeth are absent in Pterodaustro, which is interpreted as evidence for monophyodonty or diphyodonty in this taxon. Most of the microstructural features are possibly related to the complex filter-feeding apparatus of Pterodaustro and does not appear to represent the general pattern of pterosaurs.


Assuntos
Ligamento Periodontal , Dente , Animais , Argentina , Periodonto , Répteis/anatomia & histologia , Mandíbula/anatomia & histologia , Fósseis , Dente/anatomia & histologia
3.
J Anat ; 243(6): 893-909, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37519277

RESUMO

"Rauisuchia" is a non-monophyletic group of quadrupedal and carnivorous pseudosuchians that inhabited the entire world during the Middle-Upper Triassic period (Anisian/Ladinian-Rhaetian). In South America, "rauisuchians" reached the largest sizes among continental carnivores. Despite their important ecological role, some aspects of their palaeobiology have been poorly examined. Here, we study appendicular bones, dorsal ribs and osteoderms of two genera, the Argentinean Fasolasuchus tenax (PVL 3850, holotype) and the Brazilian Prestosuchus chiniquensis (SNSB-BSPG AS XXV) respectively. The femur of F. tenax is formed by laminar fibrolamellar bone, which is composed of non-fully monorefringent woven-fibred matrix and primary osteons; the dorsal rib has a Haversian bone composition with an external fundamental system recorded and the osteoderm is formed by well-organised parallel-fibred bone. The femur, humerus and fibula of P. chiniquensis are mostly composed of strongly arranged parallel-fibred bone and a laminar vascularisation. The minimal ages obtained correspond to 9 years for F. tenax (based on the maximum number of growth marks in the osteoderm) and 4 years for P. chiniquensis (obtained from the highest count of growth marks in the femur and in the humerus). F. tenax attained somatic and skeletal maturity, while P. chiniquensis was near to reaching skeletal and sexual maturity, but it was somatically immature. The overall rapid growth rate and the high and uniform vascularisation seems to imply that these features are common in most of "rauisuchians", except in P. chiniquensis.


Assuntos
Fêmur , Costelas , Brasil , Argentina , Colorado , Fêmur/anatomia & histologia , Fósseis
4.
J Anat ; 240(6): 1005-1019, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332552

RESUMO

Dicraeosaurid sauropods are iconically characterized by the presence of elongate hemispinous processes in presacral vertebrae. These hemispinous processes can show an extreme degree of elongation, such as in the Argentinean forms Amargasaurus cazaui, Pilmatueia faundezi and Bajadasaurus pronuspinax. These hyperelongated hemispinous processes have been variably interpreted as a support structure for a padded crest/sail as a display, a bison-like hump or as the internal osseous cores of cervical horns. With the purpose to test these hypotheses, here we analyze, for the first time, the external morphology, internal microanatomy and bone microstructure of the hemispinous processes from the holotype of Amargasaurus, in addition to a second dicraeosaurid indet. (also from the La Amarga Formatin; Lower Cretaceous, Argentina). Transverse thin-sections sampled from the proximal, mid and distal portions of both cervical and dorsal hemispinous processes reveal that the cortical bone is formed by highly vascularized fibrolamellar bone interrupted with cyclical growth marks. Obliquely oriented Sharpey's fibres are mostly located in the medial and lateral portions of the cortex. Secondary remodelling is evidenced by the presence of abundant secondary osteons irregularly distributed within the cortex. Both anatomical and histological evidence does not support the presence of a keratinized sheath (i.e. horn) covering the hyperelongated hemispinous processes of Amargasaurus, and either, using a parsimonious criterium, in other dicraeosaurids with similar vertebral morphology. The spatial distribution and relative orientation of the Sharpey's fibres suggest the presence of an important system of interspinous ligaments that possibly connect successive hemispinous processes in Amargasaurus. These ligaments were distributed along the entirety of the hemispinous processes. The differential distribution of secondary osteons indicates that the cervical hemispinous processes of Amargasaurus were subjected to mechanical forces that generated higher compression strain on the anterior side of the elements. Current data support the hypothesis for the presence of a 'cervical sail' in Amargasaurus and other dicraeosaurids.


Assuntos
Dinossauros , Animais , Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Ósteon , Ligamentos/anatomia & histologia , Coluna Vertebral/anatomia & histologia
5.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28794222

RESUMO

Titanosauria was the most diverse and successful lineage of sauropod dinosaurs. This clade had its major radiation during the middle Early Cretaceous and survived up to the end of that period. Among sauropods, this lineage has the most disparate values of body mass, including the smallest and largest sauropods known. Although recent findings have improved our knowledge on giant titanosaur anatomy, there are still many unknown aspects about their evolution, especially for the most gigantic forms and the evolution of body mass in this clade. Here we describe a new giant titanosaur, which represents the largest species described so far and one of the most complete titanosaurs. Its inclusion in an extended phylogenetic analysis and the optimization of body mass reveals the presence of an endemic clade of giant titanosaurs inhabited Patagonia between the Albian and the Santonian. This clade includes most of the giant species of titanosaurs and represents the major increase in body mass in the history of Titanosauria.


Assuntos
Evolução Biológica , Dinossauros , Fósseis , Animais , Tamanho Corporal , Filogenia
6.
Naturwissenschaften ; 104(1-2): 1, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27942797

RESUMO

Agustinia ligabuei is an Early Cretaceous sauropod dinosaur from the northwest of Patagonia that is currently the topic of debate with respect to its phylogenetic position and atypical dermal armor. The presence of four morphotypes of laminar and transversely elongated putative osteoderms was used to consider Agustinia as an armored sauropod. Regarding the different hypotheses about the identity of the bony structures of Agustinia (e.g., osteoderms, cervical or dorsal ribs, hypertrophied elements), a comparative histological analysis has been carried out. Histological evidence is presented herein and reveals that none of the morphotypes of Agustinia shows a primary bone tissue formed by structural fiber bundles as in other sauropod dinosaur osteoderms. Furthermore, on the basis of their gross morphology and microstructure, the bony structures originally classified as types 1 + 4 and 3 are more comparable respectively with dorsal and cervical ribs than any other kind of dermal or bony element. Due to poor preservation, the nature of the type 2 cannot be assessed but is here tentatively assigned to a pelvic girdle element. Although a phylogenetic reassessment of Agustinia is not the purpose of this paper, our paleohistological analyses have broader implications: by not supporting the dermal armor hypothesis for Agustinia, its inclusion in Lithostrotia is not justified in the absence of other diagnostic features.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/classificação , Fósseis , Filogenia , Animais , Argentina , Osso e Ossos/citologia , Dinossauros/anatomia & histologia , Especificidade da Espécie
7.
Naturwissenschaften ; 103(3-4): 26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26931610

RESUMO

Yaminuechelys is a long-necked chelid turtle whose remains have been recovered from outcrops of the Santonian-Maastrichtian and Danian of South America. With the purpose of providing data about shell sculpturing origin and palaeoecology, the bone histology of several shell elements (including neural, costal, peripheral and plastral plates) of Yaminuechelys is described herein. Histological analysis reveals that Yaminuechelys shares with Chelidae the presence of interwoven structural fibre bundles in the external cortex, and parallel-fibred bone of the internal cortex. The presence of resorption lines in several samples indicates that the particular ornamentation of the external surfaces originated, at least in part, by focalized resorption and new bone deposition. This mechanism for ornamentation origin and maintenance is here described for the first time in a turtle. Compactness of the shell bones is consistent with an aquatic habitat, which supports previous hypothesis based on palaeoenvironmental and morphological data.


Assuntos
Exoesqueleto/anatomia & histologia , Osso e Ossos/anatomia & histologia , Fósseis , Tartarugas/anatomia & histologia , Tartarugas/classificação , Exoesqueleto/citologia , Animais , Argentina , Osso e Ossos/citologia
8.
BMC Ecol Evol ; 24(1): 6, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291378

RESUMO

Studies on pathological fossil bones have allowed improving the knowledge of physiology and ecology, and consequently the life history of extinct organisms. Among extinct vertebrates, non-avian dinosaurs have drawn attention in terms of pathological evidence, since a wide array of fossilized lesions and diseases were noticed in these ancient organisms. Here, we evaluate the pathological conditions observed in individuals of different brachyrostran (Theropoda, Abelisauridae) taxa, including Aucasaurus garridoi, Elemgasem nubilus, and Quilmesaurus curriei. For this, we use multiple methodological approaches such as histology and computed tomography, in addition to the macroscopic evaluation. The holotype of Aucasaurus shows several pathognomonic traits of a failure of the vertebral segmentation during development, causing the presence of two fused caudal vertebrae. The occurrence of this condition in Aucasaurus is the first case to be documented so far in non-tetanuran theropods. Regarding the holotype of Elemgasem, the histology of two fused vertebrae shows an intervertebral space between the centra, thus the fusion is limited to the distal rim of the articular surfaces. This pathology is here considered as spondyloarthropathy, the first evidence for a non-tetanuran theropod. The microstructural arrangement of the right tibia of Quilmesaurus shows a marked variation in a portion of the outer cortex, probably due to the presence of the radial fibrolamellar bone tissue. Although similar bone tissue is present in other extinct vertebrates and the cause of its formation is still debated, it could be a response to some kind of pathology. Among non-avian theropods, traumatic injuries are better represented than other maladies (e.g., infection, congenital or metabolic diseases, etc.). These pathologies are recovered mainly among large-sized theropods such as Abelisauridae, Allosauridae, Carcharodontosauridae, and Tyrannosauridae, and distributed principally among axial elements. Statistical tests on the distribution of injuries in these theropod clades show a strong association between taxa-pathologies, body regions-pathologies, and taxa-body regions, suggesting different life styles and behaviours may underlie the frequency of different injuries among theropod taxa.


Assuntos
Dinossauros , Humanos , Animais , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Osso e Ossos , Coluna Vertebral/diagnóstico por imagem , Fósseis , América do Sul
9.
Naturwissenschaften ; 99(1): 83-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22173579

RESUMO

Sauropoda is one of the most diverse and geographically widespread clades of herbivorous dinosaurs, and until now, their remains have now been recovered from all continental landmasses except Antarctica. We report the first record of a sauropod dinosaur from Antarctica, represented by an incomplete caudal vertebra from the Late Cretaceous of James Ross Island. The size and morphology of the specimen allows its identification as a lithostrotian titanosaur. Our finding indicates that advanced titanosaurs achieved a global distribution at least by the Late Cretaceous.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Animais , Regiões Antárticas , Dinossauros/classificação
10.
PLoS One ; 16(9): e0256233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495977

RESUMO

The Late Cretaceous dinosaur record in southern South America has been improved recently; particularly with findings from Chorrillo and Cerro Fortaleza formations, both bearing ankylosaur remains, a clade that was not previously recorded in the Austral Basin. The dinosaur fauna of the type locality of Cerro Fortaleza Formation is known from -and biased to- large-sized sauropod remains and a single described taxon, the titanosaur Dreadnoughtus schrani. Here, we report the taxonomic composition of a site preserving thirteen isolated teeth and several osteoderms belonging to three dinosaur clades (Abelisauridae, Titanosauria, and Nodosauridae), and at least one clade of notosuchian crocodyliforms (Peirosauridae). They come from sediments positioned at the mid-section of the Cerro Fortaleza Formation, which is Campanian-Maastrichtian in age, adding valuable information to the abundance and biodiversity of this Cretaceous ecosystem. Since non-titanosaur dinosaur bones are almost absent in the locality, the teeth presented here provide a window onto the archosaur biodiversity of the Late Cretaceous in southern Patagonia. The nodosaurid tooth and small armor ossicles represent the first record of ankylosaurs for this stratigraphic unit. The peirosaurid material also represents the most austral record of the clade in South America.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Dente/anatomia & histologia , Animais , Argentina , Biodiversidade , Evolução Biológica , Ecossistema , Filogenia , América do Sul
11.
Sci Rep ; 11(1): 20023, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675327

RESUMO

Sauropodomorph dinosaurs dominated the herbivorous niches during the first 40 million years of dinosaur history (Late Triassic-Early Jurassic), yet palaeobiological factors that influenced their evolutionary success are not fully understood. For instance, knowledge on their behaviour is limited, although herding in sauropodomorphs has been well documented in derived sauropods from the Late Jurassic and Cretaceous. Here we report an exceptional fossil occurrence from Patagonia that includes over 100 eggs and skeletal specimens of 80 individuals of the early sauropodomorph Mussaurus patagonicus, ranging from embryos to fully-grown adults, with an Early Jurassic age as determined by high-precision U-Pb zircon geochronology. Most specimens were found in a restricted area and stratigraphic interval, with some articulated skeletons grouped in clusters of individuals of approximately the same age. Our new discoveries indicate the presence of social cohesion throughout life and age-segregation within a herd structure, in addition to colonial nesting behaviour. These findings provide the earliest evidence of complex social behaviour in Dinosauria, predating previous records by at least 40 My. The presence of sociality in different sauropodomorph lineages suggests a possible Triassic origin of this behaviour, which may have influenced their early success as large terrestrial herbivores.


Assuntos
Dinossauros/anatomia & histologia , Paleontologia/métodos , Animais , Argentina , Comportamento Animal , Evolução Biológica , Ovos , Fósseis , Geografia , Filogenia , Fatores de Tempo
12.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190132, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31928197

RESUMO

Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological functions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses. For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudinata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Assuntos
Adaptação Biológica , Evolução Biológica , Osso e Ossos/fisiologia , Répteis/fisiologia , Animais , Osso e Ossos/anatomia & histologia , Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Tartarugas/anatomia & histologia , Tartarugas/fisiologia
13.
Sci Rep ; 10(1): 10955, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616813

RESUMO

Megamammals constituted an important component in the Pleistocene faunal communities of South America. Paleobiological and paleoecological studies involving different megamammal taxa have increased significantly in the last years, but there are still several poorly-known issues of its life history. In this work, we analyze an assemblage composed of 13 individuals of different ontogenetic stages, and possibly different sex, belonging to the giant ground sloth Lestodon armatus (Xenarthra, Folivora), recovered from Playa del Barco site (Pampean Region, Argentina). A dating of 19,849 years Cal BP allows assigning this assemblage to a period of the MIS (Marine Isotope Stage) 2 related to the end of the Last Glacial Maximum. Based on multiple lines of research (e.g. taphonomy, paleopathology, osteohistology, isotopy), we interpret the origin of the assemblage and diverse paleobiological and paleoecological aspects (e.g. social behavior, ontogenetic changes, sexual dimorphism, diseases, resource and habitat use, trophic relationships) of L. armatus. Evidence suggests that the assemblage was formed by a local single event of catastrophic mortality, which affected different members of a social group. This record represents the first accurate evidence of gregariousness for this ground sloth, providing new data on a poorly-known behavior among extinct Folivora.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Ecossistema , Fósseis , Xenarthra/anatomia & histologia , Xenarthra/fisiologia , Animais , Argentina , Feminino , Masculino
14.
Nat Ecol Evol ; 2(8): 1227-1232, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988169

RESUMO

Dinosaurs dominated the terrestrial ecosystems for more than 140 Myr during the Mesozoic era, and among them were sauropodomorphs, the largest land animals recorded in the history of life. Early sauropodomorphs were small bipeds, and it was long believed that acquisition of giant body size in this clade (over 10 tonnes) occurred during the Jurassic and was linked to numerous skeletal modifications present in Eusauropoda. Although the origin of gigantism in sauropodomorphs was a pivotal stage in the history of dinosaurs, an incomplete fossil record obscures details of this crucial evolutionary change. Here, we describe a new sauropodomorph from the Late Triassic of Argentina nested within a clade of other non-eusauropods from southwest Pangaea. Members of this clade attained large body size while maintaining a plesiomorphic cyclical growth pattern, displaying many features of the body plan of basal sauropodomorphs and lacking most anatomical traits previously regarded as adaptations to gigantism. This novel strategy highlights a highly accelerated growth rate, an improved avian-style respiratory system, and modifications of the vertebral epaxial musculature and hindlimbs as critical to the evolution of gigantism. This reveals that the first pulse towards gigantism in dinosaurs occurred over 30 Myr before the appearance of the first eusauropods.


Assuntos
Dinossauros/anatomia & histologia , Animais , Tamanho Corporal , Fêmur/anatomia & histologia , Fósseis , Úmero/anatomia & histologia , Escápula/anatomia & histologia
15.
R Soc Open Sci ; 2(10): 150369, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26587248

RESUMO

Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin of this structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of the supraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains of primary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.

16.
J Morphol ; 276(4): 385-402, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25640219

RESUMO

Postcranial osteoderms are commonly developed in the major lineages of Archosauriformes, including forms such as proterochampsids and doswelliids. Here, we survey the histology of osteoderms of the doswelliids Archeopelta arborensis and Tarjadia ruthae, and the proterochampsids Chanaresuchus bonapartei and Pseudochampsa ischigualastensis to understand better the morphogenesis of these skeletal elements. Whereas, the Doswelliid osteoderms possess a trilaminar organization, in which two cortices (external and basal) can be differentiated from an internal core of cancellous bone, these elements are compact structures in proterochampsids. The osteoderms of P. ischigualastensis are avascular and they consist entirely of parallel-fibered bone. Conversely, the osteoderms of C. bonapartei are well vascularized structures composed of zones of woven-fibered bone and annuli of parallel-fibered bone. The rather simple microstructure observed in P. ischigualastensis osteoderms suggests that these elements grew at a constant, low rate. Compared with proterochampsids, doswelliid osteoderms possess a more complex histology, which appears to be linked to variations in the growth rate during the osteoderm formation and also to the development of the external ornamentation. A comparison of our findings with the results of earlier studies on other archosauriforms (phytosaurs and pseudosuchians) reveals that the general osteoderm histology of doswelliids bears a closer resemblance to that of phytosaurs and pseudosuchians than the proterochampsid osteoderm microstructure. If all archosauriform osteoderms are homologous structures, the closer resemblance of doswellid osteoderm microstructures to that of phytosaurs and pseudosuchians is in agreement with the hypothesis that doswellids are more closely related to archosaurs than proterochampsids. J. Morphol. 276:385-402, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Osso e Ossos/anatomia & histologia , Répteis/anatomia & histologia , Animais , Evolução Biológica
17.
Anat Rec (Hoboken) ; 297(8): 1385-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863550

RESUMO

Mussaurus patagonicus (Dinosauria: Sauropodomorpha) is a basal sauropodomorph from the Late Triassic of southern Argentina that is known from a large number of individuals, including juveniles, subadults, and adults. Here, we report on the occurrence of an unusual bone tissue in an individual of M. patagonicus. The rather atypical bone tissue is located within the femoral medullary cavity and also occurs within several erosion cavities of the midinner part of the cortex. This tissue is well vascularized and is composed of a matrix that consists of abundant and densely packed osteocyte lacunae. Although some features of this tissue resembles avian medullary bone, the histological features are distinctive and share more features with the pathological, reactive bone produced in extant birds in response to a retrovirus-induced disease (avian osteopetrosis). Here, we also discuss and provide histological features to effectively differentiate endosteally formed medullary bone from pathological avian osteopetrosis.


Assuntos
Evolução Biológica , Osso e Ossos/patologia , Dinossauros/anatomia & histologia , Fêmur/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Dinossauros/fisiologia , Fêmur/fisiologia
18.
Anat Rec (Hoboken) ; 297(2): 240-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376217

RESUMO

As in other archosauriforms, phytosaurs and aetosaurs are characterized by the presence of well-developed osteoderms. Here we provide a comparative study on the microstructure of phytosaur (five taxa) and aetosaur (thirteen taxa) osteoderms. For outgroup comparison, we sampled osteoderms of the sister taxon to Aetosauria, Revueltosaurus callenderi, and the doswelliid Jaxtasuchus salomoni. Phytosaur, aetosaur, and Jaxtasuchus osteoderms are composed of a diploe structure, whereas the Revueltosaurus osteoderm microanatomy is more compact. The external cortex of phytosaurs, Revueltosaurus and Jaxtasuchus osteoderms is mainly composed of parallel-fibered bone. In aetosaurs, the external cortex mainly consists of lamellar bone, with lines of resorption within the primary bone indicating successive cycles of bone erosion and deposition. The basal cortex in all the specimens is composed of parallel-fibered bone, with the cancellous internal core being more strongly developed in aetosaurs than in phytosaurs. Woven or fibro-lamellar bone was recorded in both phytosaurian and aetosaurian taxa, as well as in Jaxtasuchus. Structural fibers, which at least partly suggest metaplastic origin, were only recorded in the internal core of two phytosaurs and in the basal cortex of one aetosaur. Osteoderm thickness and cancellous to compact bone ratios appear to be subject to ontogenetic change. Minimum growth mark counts in osteoderms sampled indicate that some aetosaurs and phytosaurs lived for at least two decades. Bone microstructures are more uniform in phytosaur osteoderms and show a higher level of disparity among aetosaur osteoderms, and at least in the latter, histological features are potentially apomorphic for species/genus level.


Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Répteis/anatomia & histologia , Animais , Filogenia
19.
PLoS One ; 8(5): e64253, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691183

RESUMO

BACKGROUND: Central Patagonia, Argentina, preserves an abundant and rich fossil record. Among vertebrate fossils from the Upper Cretaceous Bajo Barreal Formation of Patagonia, five individuals of the small, non-avian theropod dinosaur Aniksosaurus darwini were recovered. Group behavior is an important aspect of dinosaur paleoecology, but it is not well-documented and is poorly understood among non-avian Theropoda. METHODS/PRINCIPAL FINDINGS: The taphonomic association of individuals from the Bajo Barreal Formation and aspects of their bone histology suggest gregarious behavior for Aniksosaurus, during at least a portion of the life history of this species. Histology indicates that the specimens were juvenile to sub-adult individuals. In addition, morphological differences between individuals, particularly proportions of the appendicular bones, are probably related to body-size dimorphism rather than ontogenetic stage. CONCLUSIONS/SIGNIFICANCE: Gregarious behaviour may have conferred a selective advantage on Aniksosaurus individuals, contributing to their successful exploitation of the Cretaceous paleoenvironment preserved in the Bajo Barreal Formation. The monospecific assemblage of Aniksosaurus specimens constitutes only the second body fossil association of small, coelurosaurian theropods in South America and adds valuable information about the paleoecologies of non-avian theropod dinosaurs, particularly in the early Late Cretaceous of Patagonia.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros , Animais , Argentina
20.
PLoS One ; 6(1): e14572, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21298087

RESUMO

BACKGROUND: The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic-Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods. METHODOLOGY/PRINCIPAL FINDINGS: A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina). The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda. CONCLUSIONS/SIGNIFICANCE: The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the characteristic sauropod body plan evolved gradually, with a step-wise pattern of character appearance.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Sacro , Animais , Argentina , Dinossauros/genética , Fósseis , Filogenia , Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA