Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 797-804, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189787

RESUMO

Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.

2.
Nano Lett ; 24(26): 8117-8125, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38901032

RESUMO

Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.

3.
J Am Chem Soc ; 146(23): 15659-15665, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819953

RESUMO

Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Csp3-Csp3 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.

4.
Anal Chem ; 96(23): 9468-9477, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821490

RESUMO

Leukemia comprises a diverse group of bone marrow tumors marked by cell proliferation. Current diagnosis involves identifying leukemia subtypes through visual assessment of blood and bone marrow smears, a subjective and time-consuming method. Our study introduces the characterization of different leukemia subtypes using a global clustering approach of Raman hyperspectral maps of cells. We analyzed bone marrow samples from 19 patients, each presenting one of nine distinct leukemia subtypes, by conducting high spatial resolution Raman imaging on 319 cells, generating over 1.3 million spectra in total. An automated preprocessing pipeline followed by a single-step global clustering approach performed over the entire data set identified relevant cellular components (cytoplasm, nucleus, carotenoids, myeloperoxidase (MPO), and hemoglobin (HB)) enabling the unsupervised creation of high-quality pseudostained images at the single-cell level. Furthermore, this approach provided a semiquantitative analysis of cellular component distribution, and multivariate analysis of clustering results revealed the potential of Raman imaging in leukemia research, highlighting both advantages and challenges associated with global clustering.


Assuntos
Leucemia , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Leucemia/patologia , Análise por Conglomerados , Peroxidase/metabolismo
5.
Opt Express ; 32(12): 21230-21242, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859482

RESUMO

Many applications of ultrafast and nonlinear optical microscopy require the measurement of small differential signals over large fields-of-view. Widefield configurations drastically reduce the acquisition time; however, they suffer from the low frame rates of two-dimensional detectors, which limit the modulation frequency, making the measurement sensitive to excess laser noise. Here we introduce a self-referenced detection configuration for widefield differential imaging. Employing regions of the field of view with no differential signal as references, we cancel probe fluctuations and increase the signal-to-noise ratio by an order of magnitude reaching noise levels only a few percent above the shot noise limit. We anticipate broad applicability of our method to transient absorption, stimulated Raman scattering and photothermal-infrared microscopies.

6.
Appl Opt ; 63(1): 112-121, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175007

RESUMO

Broadband coherent anti-Stokes Raman scattering (BCARS) is a powerful spectroscopy method combining high signal intensity with spectral sensitivity, enabling rapid imaging of heterogeneous samples in biomedical research and, more recently, in crystalline materials. However, BCARS encounters spectral distortion due to a setup-dependent non-resonant background (NRB). This study assesses BCARS reproducibility through a round robin experiment using two distinct BCARS setups and crystalline materials with varying structural complexity, including diamond, 6H-SiC, KDP, and KTP. The analysis compares setup-specific NRB correction procedures, detected and NRB-removed spectra, and mode assignment. We determine the influence of BCARS setup parameters like pump wavelength, pulse width, and detection geometry and provide a practical guide for optimizing BCARS setups for solid-state applications.

7.
Nano Lett ; 23(20): 9235-9242, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751559

RESUMO

The coupling of the electron system to lattice vibrations and their time-dependent control and detection provide unique insight into the nonequilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2H-MoTe2 encapsulated with hBN using broadband optical pump-probe microscopy. The sub-40 fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∼20% of the maximum transient signal, due to the displacive excitation of the out-of-plane A1g phonon. Ab initio calculations reveal a dramatic rearrangement of the optical absorption of monolayer MoTe2 induced by an out-of-plane stretching and compression of the crystal lattice, consistent with an A1g -type oscillation. Our results highlight the extreme sensitivity of the optical properties of monolayer TMDs to small structural modifications and their manipulation with light.

8.
J Am Chem Soc ; 145(33): 18382-18390, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37525883

RESUMO

One-dimensional (1D) linear nanostructures comprising sp-hybridized carbon atoms, as derivatives of the prototypical allotrope known as carbyne, are predicted to possess outstanding mechanical, thermal, and electronic properties. Despite recent advances in their synthesis, their chemical and physical properties are still poorly understood. Here, we investigate the photophysics of a prototypical polyyne (i.e., 1D chain with alternating single and triple carbon bonds) as the simplest model of finite carbon wire and as a prototype of sp-carbon-based chains. We perform transient absorption experiments with high temporal resolution (<30 fs) on monodispersed hydrogen-capped hexayne H─(C≡C)6─H synthesized by laser ablation in liquid. With the support of computational studies based on ground state density functional theory (DFT) and excited state time-dependent (TD)-DFT calculations, we provide a comprehensive description of the excited state relaxation processes at early times following photoexcitation. We show that the internal conversion from a bright high-energy singlet excited state to a low-lying singlet dark state is ultrafast and takes place with a 200 fs time constant, followed by thermalization on the picosecond time scale and decay of the low-energy singlet state with hundreds of picoseconds time constant. We also show that the time scale of these processes does not depend on the end groups capping the sp-carbon chain. The understanding of the primary photoinduced events in polyynes is of key importance both for fundamental knowledge and for potential optoelectronic and light-harvesting applications of low-dimensional nanostructured carbon-based materials.

9.
Opt Express ; 31(14): 23245-23259, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475414

RESUMO

We present a system based on a high-energy femtosecond ytterbium laser seeding an optical parametric amplifier and a photonic crystal hollow core fiber (PCHCF) compressor for coherent anti-Stokes Raman scattering (CARS) spectroscopy. The PCHCF provides spectral broadening of the Stokes pulse which is then compressed to a duration matched to that of the pump pulse. In these conditions, the excitation efficiency of vibrational levels in the target molecules is largely improved, as the time gating effect due to the mismatch between the durations of the pump and Stokes pulses is avoided. Experiments are presented along with a theoretical model to quantify expected improvement of sensitivity. The system is used to detect bacterial spores deposited on a surface with a single laser shot at unprecedented signal-to-noise ratio.

10.
Opt Express ; 31(1): 107-115, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606945

RESUMO

Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e., ΔT/T or ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS2 (1L-MoS2) by measuring ΔT/T and ΔR/R with different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS2. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitude of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.

11.
Chemphyschem ; 24(13): e202300127, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066799

RESUMO

Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor. Among chromophores without the auxiliary acceptor, stronger fluorescence solvatochromism and faster excited state dynamics are exhibited for the derivatives with the mismatched geometry. On the contrary, introduction of the auxiliary acceptor to the benzothiazole unit enhances the intramolecular charge transfer ICT (featuring ultrafast dynamics of the excited state) for the matched geometry. The data confirm the crucial role of the relative orientation of asymmetric heteroaromatic unit (regioisomeric effect) in dipolar as well as in multipolar molecules in tuning linear and nonlinear optical properties as well as excited state dynamics.

12.
Nanotechnology ; 34(47)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37607501

RESUMO

Defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) greatly influence their electronic and optical properties by introducing localized in-gap states. Using different non-invasive techniques, we have investigated the spatial distribution of intrinsic defects in as-grown chemical vapor deposition (CVD) MoS2monolayers and correlated the results with the growth temperature of the sample. We have shown that by increasing the CVD growth temperature the concentration of defects decreases and their spatial distribution and type change, influencing the sample's electronic and optical properties.

13.
J Phys Chem A ; 127(49): 10435-10449, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051114

RESUMO

In this work, we show how the structural features of photoactive azobenzene derivatives can influence the photoexcited state behavior and the yield of the trans/cis photoisomerization process. By combining high-resolution transient absorption experiments in the vis-NIR region and quantum chemistry calculations (TDDFT and RASPT2), we address the origin of the transient signals of three poly-substituted push-pull azobenzenes with an increasing strength of the intramolecular interactions stabilizing the planar trans isomer (absence of intramolecular H-bonds, methyl, and traditional H-bond, respectively, for 4-diethyl-4'-nitroazobenzene, Disperse Blue 366, and Disperse Blue 165) and a commercial red dye showing keto-enol tautomerism involving the azo group (Sudan Red G). Our results indicate that the intramolecular H-bonds can act as a "molecular lock" stabilizing the trans isomer and increasing the energy barrier along the photoreactive CNNC torsion coordinate, thus preventing photoisomerization in the Disperse Blue dyes. In contrast, the involvement of the azo group in keto-enol tautomerism can be employed as a strategy to change the nature of the lower excited state and remove the nonproductive symmetric CNN/NNC bending pathway typical of the azo group, thus favoring the productive torsional motion. Taken together, our results can provide guidelines for the structural design of azobenzene-based photoswitches with a tunable excited state behavior.

14.
J Chem Phys ; 159(8)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37615395

RESUMO

Nonlinear spectroscopy with quantum entangled photons is an emerging field of research that holds the promise to achieve superior signal-to-noise ratio and effectively isolate many-body interactions. Photon sources used for this purpose, however, lack the frequency tunability and spectral bandwidth demanded by contemporary molecular materials. Here, we present design strategies for efficient spontaneous parametric downconversion to generate biphoton states with adequate spectral bandwidth and at visible wavelengths. Importantly, we demonstrate, by suitable design of the nonlinear optical interaction, the scope to engineer the degree of spectral correlations between the photons of the pair. We also present an experimental methodology to effectively characterize such spectral correlations. Importantly, we believe that such a characterization tool can be effectively adapted as a spectroscopy platform to optically probe system-bath interactions in materials.

15.
Nano Lett ; 22(13): 5322-5329, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759746

RESUMO

In single-layer (1L) transition metal dichalcogenides, the reduced Coulomb screening results in strongly bound excitons which dominate the linear and the nonlinear optical response. Despite the large number of studies, a clear understanding on how many-body and Coulomb correlation effects affect the excitonic resonances on a femtosecond time scale is still lacking. Here, we use ultrashort laser pulses to measure the transient optical response of 1L-WS2. In order to disentangle many-body effects, we perform exciton line-shape analysis, and we study its temporal dynamics as a function of the excitation photon energy and fluence. We find that resonant photoexcitation produces a blue shift of the A exciton, while for above-resonance photoexcitation the transient response at the optical bandgap is largely determined by a reduction of the exciton oscillator strength. Microscopic calculations based on excitonic Heisenberg equations of motion quantitatively reproduce the nonlinear absorption of the material and its dependence on excitation conditions.

16.
Nano Lett ; 22(7): 2748-2754, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343692

RESUMO

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi-Dirac occupation probability at high hot-electron temperatures.

17.
J Am Chem Soc ; 144(41): 18927-18937, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205547

RESUMO

In concert with carbonyl compounds, Lewis acids have been identified as a versatile class of photocatalysts. Thus far, research has focused on activation of the substrate, either by changing its photophysical properties or by modifying its photochemistry. In this work, we expand the established mode of action by demonstrating that UV photoexcitation of a Lewis acid-base complex can lead to homolytic cleavage of a covalent bond in the Lewis acid. In a study on the complex of benzaldehyde and the Lewis acid BCl3, we found evidence for homolytic B-Cl bond cleavage leading to formation of a borylated ketyl radical and a free chlorine atom only hundreds of femtoseconds after excitation. Both time-dependent density functional theory and transient absorption experiments identify a benzaldehyde-BCl2 cation as the dominant species formed on the nanosecond time scale. The experimentally validated B-Cl bond homolysis was synthetically exploited for a BCl3-mediated hydroalkylation reaction of aromatic aldehydes (19 examples, 42-76% yield). It was found that hydrocarbons undergo addition to the C═O double bond via a radical pathway. The photogenerated chlorine radical abstracts a hydrogen atom from the alkane, and the resulting carbon-centered radical either recombines with the borylated ketyl radical or adds to the ground-state aldehyde-BCl3 complex, releasing a chlorine atom. The existence of a radical chain was corroborated by quantum yield measurements and by theory. The photolytic mechanism described here is based on electron transfer between a bound chlorine and an aromatic π-system on the substrate. Thereby, it avoids the use of redox-active transition metals.


Assuntos
Benzaldeídos , Ácidos de Lewis , Cloro , Aldeídos , Cloretos , Carbono/química , Hidrogênio , Alcanos
18.
J Am Chem Soc ; 144(45): 20610-20619, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318748

RESUMO

Vibronic coupling has been proposed to play a decisive role in promoting ultrafast singlet fission (SF), the conversion of a singlet exciton into two triplet excitons. Its inherent complexity is challenging to explore, both from a theoretical and an experimental point of view, due to the variety of potentially relevant vibrational modes. Here, we report a study on blends of the prototypical SF chromophore pentacene in which we engineer the polarizability of the molecular environment to scan the energy of the excited singlet state (S1) continuously over a narrow energy range, covering vibrational sublevels of the triplet-pair state (1(TT)). Using femtosecond transient absorption spectroscopy, we probe the dependence of the SF rate on energetic resonance between vibronic states and, by comparison with simulation, identify vibrational modes near 1150 cm-1 as key in facilitating ultrafast SF in pentacene.

19.
J Am Chem Soc ; 144(28): 12884-12892, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796759

RESUMO

By combining UV transient absorption spectroscopy with sub-30-fs temporal resolution and CASPT2/MM calculations, we present a complete description of the primary photoinduced processes in solvated tryptophan. Our results shed new light on the role of the solvent in the relaxation dynamics of tryptophan. We unveil two consecutive coherent population transfer events involving the lowest two singlet excited states: a sub-50-fs nonadiabatic La → Lb transfer through a conical intersection and a subsequent 220 fs reverse Lb → La transfer due to solvent-assisted adiabatic stabilization of the La state. Vibrational fingerprints in the transient absorption spectra provide compelling evidence of a vibronic coherence established between the two excited states from the earliest times after photoexcitation and lasting until the back-transfer to La is complete. The demonstration of response to the environment as a driver of coherent population dynamics among the excited states of tryptophan closes the long debate on its solvent-assisted relaxation mechanisms and extends its application as a local probe of protein dynamics to the ultrafast time scales.


Assuntos
Triptofano , Vibração , Solventes/química
20.
Opt Express ; 30(9): 15376-15387, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473258

RESUMO

A laser system for standoff coherent anti-Stokes Raman scattering (CARS) spectroscopy of various materials under ambient light conditions is presented. The system is based on an ytterbium laser and an ultrafast optical parametric amplifier for the generation of a broadband pump tunable from 880 to 930 nm, a Stokes at 1025 nm, and a narrowband probe at 512.5 nm. High-resolution Raman spectra encompassing the fingerprint region (400-1800 cm-1) are obtained in 5 ms for toluene, and 100 ms for two types of sugars, glucose and fructose, at a distance of 1 m. As a demonstration of the potential of the setup, hyperspectral images of a 2×2-cm2 target area are collected for a toluene cuvette and a glucose/fructose pressed disk. Our approach is suitable for implementation of a portable system for standoff CARS imaging of chemical and biological materials.


Assuntos
Análise Espectral Raman , Itérbio , Frutose , Glucose , Lasers , Análise Espectral Raman/métodos , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA