Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Ecol ; 46(7): 631-641, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32588284

RESUMO

Plants have evolved robust mechanisms to cope with incidental variation (e.g. herbivory) and periodical variation (e.g. light/darkness during the day-night cycle) in their environment. It has been shown that a plant's susceptibility to pathogens can vary during its day-night cycle. We demonstrated earlier that the spider mite Tetranychus urticae induces jasmonate- and salicylate-mediated defenses in tomato plants while the spider mite T. evansi suppresses these defenses probably by secreting salivary effector proteins. Here we compared induction/suppression of plant defenses; the expression of mite-effector genes and the amount of damage due to mite feeding during the day and during the night. T. urticae feeding upregulated the expression of jasmonate and salicylate marker-genes albeit significantly higher under light than under darkness. Some of these marker-genes were also upregulated by T. evansi-feeding albeit to much lower levels than by T. urticae-feeding. The expression of effector 28 was not affected by light or darkness in either mite species. However, the expression of effector 84 was considerably higher under light, especially for T. evansi. Finally, while T. evansi produced overall more feeding damage than T. urticae both mites produced consistently more damage during the dark phase than under light. Our results suggest that induced defenses are subject to diurnal variation possibly causing tomatoes to incur more damage due to mite-feeding during the dark phase. We speculate that mites, but especially T. evansi, may relax effector production during the dark phase because under these conditions the plant's ability to upregulate defenses is reduced.


Assuntos
Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Solanum lycopersicum/fisiologia , Tetranychidae/fisiologia , Animais , Escuridão , Comportamento Alimentar , Feminino , Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Folhas de Planta/metabolismo , Especificidade da Espécie , Fatores de Tempo
2.
New Phytol ; 214(4): 1688-1701, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28386959

RESUMO

Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato.


Assuntos
Herbivoria , Phaseolus/fisiologia , Solanum lycopersicum/fisiologia , Tetranychidae/fisiologia , Animais , Ciclopentanos/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Masculino , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Ácido Salicílico/metabolismo , Tetranychidae/genética
3.
Front Plant Sci ; 11: 980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754172

RESUMO

When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.

4.
Front Plant Sci ; 9: 1057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105039

RESUMO

Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA