RESUMO
OBJECTIVES: The proportion of older people with dementia in China is gradually increasing with the increase in the aging population over recent years. Hypertension and diabetes are common non-communicable diseases among rural populations in China. However, it remains unclear whether these conditions affect the occurrence and development of cognitive impairment as there is limited research on cognitive status and its risk factors among residents of rural areas. METHODS: A multi-stage stratified cluster random sampling method was used to select 5400 participants from rural permanent residents. A self-designed structured questionnaire was used to investigate demographic data of the participants. Cognitive function was assessed using the Montreal Cognitive Function Assessment Scale (MoCA). The results were analyzed using chi-square test, ANOVA and multiple linear regression analysis. RESULTS: A total of 5028 participants returned the survey, giving a response rate of 93.1%. Higher education (odds ratio (OR) = 3.2, 95% confidence interval (CI) 2.87-3.54, p < 0.001), higher income (OR = 1.61, 95% CI 1.16-2.07, p < 0.001), and dietary control (OR = 0.66, 95%CI 0.34-0.98, p < 0.001) were protective factors. A visual representation of the relationship between annual income and MoCA score showed an inverted U-curve, the group with an annual income of 6000-7999 RMB had a maximum OR of 1.93 (95%CI 0.12-2.74, p < 0.001). While difficulty in maintaining sleep were risk factors for cognitive impairment (OR = -2.28, 95% CI-4.18-0.39, p = 0.018). CONCLUSIONS: Participants with middle incomes had better cognitive status than those with the highest incomes. Higher education, proper diet control and good sleep are beneficial to the cognitive status of residents in rural areas.
Assuntos
Diabetes Mellitus , Hipertensão , Humanos , Idoso , Estudos Transversais , População Rural , Fatores de Risco , Hipertensão/epidemiologia , Cognição , China/epidemiologiaRESUMO
Aluminum (Al) is a common neurotoxic element that can exacerbate intracellular ß-amyloid (Aß) deposition. Reelin is a highly conserved extracellular glycoprotein that is involved in intracellular Aß deposition. However, the action of Reelin on aluminum-induced Aß deposition is not fully understood. Here, we investigated the effects of the Reelin-Dab1 signaling pathway on Aß deposition in aluminum maltol (Al(mal)3) exposure in rat pheochromocytoma-derived cells (PC12). Our results showed that Al(mal)3 exposure decreased activity of PC12, increased expression of Aß42, and decreased expression of Aß40. Moreover, Al(mal)3 exposure in PC12 induced Reelin-Dab1 signaling pathway-associated proteins changed, decreased expression of Reelin and Dab1, and increased expression of pdab1. Moreover, the expression of Reelin, Dab1, and Aß40 was found to be elevated in PC12 exposed to Al(mal)3 and corticosterone compared to those exposed to Al(mal)3. Also, the expression of Reelin, Dab1, and Aß40 was found to be depressed in PC12 exposed to Al(mal)3 and streptozotocin compared with cells exposed to Al(mal)3 alone. These results suggested that Al(mal)3 inhibits the expression of the Reelin-Dab1 signaling pathway, promoting Aß deposition. Thus, our findings provided important evidence to better understand how the Reelin-Dab1 signaling pathway may be a potential mechanism of Aß deposition induced by aluminum.
Assuntos
Alumínio , Proteínas da Matriz Extracelular , Animais , Ratos , Alumínio/toxicidade , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismoRESUMO
Aluminum (Al), a neurotoxic element, can induce Alzheimer's disease-like (AD-like) changes by triggering neuronal death. Iron homeostasis disturbance has also been implicated in Alzheimer's disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of neuronal death induced by aluminum maltolate (Al(mal)3) in the pathogenesis of AD remains elusive. In this study, the results of three different behavioral experiments suggested that the learning and memory ability deteriorated and autonomous activity declined of these rats that exposed Al(mal)3 were alleviated by deferoxamine (DFO). Transmission electron microscope observations showed that the membrane was ruptured, and the membrane density increased and ridge disappearance (the most prominent characteristic of ferroptosis) in the perinuclear and cytoplasmic compartments of the hippocampal neurons were perceived in the exposure group, while the DFO group and 18 µM/kg Al(mal)3+DFO group were alleviated compared with 18 µM/kg Al(mal)3. In addition, DFO prevented oxidative stress, such as increased glutathione (GSH) and decreased malondialdehyde (MDA) and reactive oxygen species (ROS), while the latter two indexes had the same changing tendency as the total iron of brain tissue. These data indicated that Al(mal)3 could cause ferroptosis in Sprague-Dawley (SD) rat neurons, which was inhibited by DFO via reducing the content of iron and increasing the ability of cells to resist oxidative damage.