Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(32): 10156-9, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26244820

RESUMO

In this communication, we report a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe-FeO(x) nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeO(x) within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeO(x) and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe-FeO(x)/TiO2 catalyst exhibits no activity decay. Our results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.

2.
Langmuir ; 31(34): 9356-65, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26256038

RESUMO

Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. An important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. However, the efficacy of this method to tune the adsorption performance has not been explored in materials of differing textural and morphological nature. Here, these issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ∼60% with the quantity of doped Zr for a "standard" SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.


Assuntos
Dióxido de Carbono/química , Polietilenoimina/química , Dióxido de Silício/química , Zircônio/química , Adsorção , Dióxido de Silício/síntese química , Propriedades de Superfície
3.
Angew Chem Int Ed Engl ; 54(3): 932-6, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25404583

RESUMO

A porous liquid containing empty cavities has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. Moreover, such a facile synthetic strategy can be further extended to the fabrication of other types of nanostructure-based porous liquid, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

4.
Angew Chem Int Ed Engl ; 54(15): 4582-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25683637

RESUMO

A soft chemistry synthetic strategy based on a Friedel-Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Moreover, this soft chemistry synthetic protocol can be further extended to nanotexture other arene-based polymers with robust frameworks.

5.
J Am Chem Soc ; 136(32): 11260-3, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25075561

RESUMO

Here we describe a lab-in-a-shell strategy for the preparation of multifunctional core-shell nanospheres consisting of a core of metal clusters and an outer microporous silica shell. Various metal clusters (e.g., Pd and Pt) were encapsulated and confined in the void space mediated by the entrapped polymer dots inside hollow silica nanospheres acting first as complexing agent for metal ions and additionally as encapsulator for clusters, limiting growth and suppressing the sintering. The Pd clusters encapsulated in hybrid core-shell structures exhibit exceptional size-selective catalysis in allylic oxidations of substrates with the same reactive site but different molecular size (cyclohexene ∼0.5 nm, cholesteryl acetate ∼1.91 nm). The solvent-free aerobic oxidation of diverse hydrocarbons and alcohols was further carried out to illustrate the benefits of such an architecture in catalysis. High activity, outstanding thermal stability and good recyclability were observed over the core-shell nanocatalyst.

6.
Langmuir ; 30(12): 3606-11, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24655006

RESUMO

We report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Difusão , Íons/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
7.
J Am Chem Soc ; 134(25): 10478-84, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22631446

RESUMO

A general strategy for the synthesis of porous, fluorescent, triazine-framework-based membranes with intrinsic porosity through an aromatic nitrile trimerization reaction is presented. The essence of this strategy lies in the use of a superacid to catalyze the cross-linking reaction efficiently at a low temperature, allowing porous polymer membrane architectures to be facilely derived. With functionalized triazine units, the membrane exhibits an increased selectivity for membrane separation of CO(2) over N(2). The good ideal CO(2)/N(2) selectivity of 29 ± 2 was achieved with a CO(2) permeability of 518 ± 25 barrer. Through this general synthesis protocol, a new class of porous polymer membranes with tunable functionalities and porosities can be derived, significantly expanding the currently limited library of polymers with intrinsic microporosity for synthesizing functional membranes in separation, catalysis, and energy storage/conversion.

8.
Chem Sci ; 7(2): 905-909, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791121

RESUMO

A hyper-crosslinked ß-cyclodextrin porous polymer (BnCD-HCPP) was designed and synthesized facilely by ß-cyclodextrin benzylation and subsequent crosslinking via a Friedel-Crafts alkylation route. The BnCD-HCPP shows an extremely high BET surface area, large pore volume, and high thermal stability, making it a highly efficient adsorbent for removal of aromatic pollutants from water. The adsorption efficiency in terms of distribution coefficient, defined as the ratio of adsorption capacity to equilibrium adsorbate concentration, ranged from 103 to 106 mL g-1 within a concentration of 0-100 ppm, one order of magnitude higher than that of other ß-cyclodextrin-based adsorbents reported previously. The molar percentage of adsorbate to ß-cyclodextrin exceeded 300%, suggesting that the adsorption occurred not only in the cyclodextrin cavities via a 1 : 1 complexation, but also in the nanopores of the BnCD-HCPP created during the hyper-crosslinking. The BnCD-HCPP can be further functionalized by incorporation of gold nanoparticles for catalytic transformation of adsorbed phenolic compounds such as 4-nitrophenol to 4-aminophenol.

9.
Chem Commun (Camb) ; 51(97): 17261-4, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26460737

RESUMO

An innovative strategy for post-synthesis nitrogen-doping of mesoporous carbons (MCs) with high yields (>90%) at low temperatures (230-380 °C) by using a strong base, sodium amide (NaNH2), was developed. The as-prepared N-doped MCs exhibit a significantly enhanced CO2 adsorption performance in terms of capacity and selectivity when compared to their parent MCs.

10.
ChemSusChem ; 7(6): 1703-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24729382

RESUMO

Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.


Assuntos
Frutose/química , Furaldeído/análogos & derivados , Líquidos Iônicos/química , Dióxido de Silício/química , Compostos de Vanádio/química , Catálise , Furaldeído/química , Imidazóis/química , Sulfonamidas , Água/química
11.
Nat Commun ; 5: 3705, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739439

RESUMO

High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.


Assuntos
Gases/isolamento & purificação , Membranas Artificiais , Polímeros/química , Dióxido de Carbono/química , Reagentes de Ligações Cruzadas/química , Nanotecnologia/métodos , Oxigênio/química
12.
Chem Commun (Camb) ; 49(33): 3464-6, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23511903

RESUMO

Nanosized BaSO4-based mesoporous hybrid materials have been developed and identified as new efficient inorganic salt-based support systems for ultrastable gold nanoparticles in low-temperature CO oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA