Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7899): 79-85, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236972

RESUMO

Biaryl compounds, with two connected aromatic rings, are found across medicine, materials science and asymmetric catalysis1,2. The necessity of joining arene building blocks to access these valuable compounds has inspired several approaches for biaryl bond formation and challenged chemists to develop increasingly concise and robust methods for this task3. Oxidative coupling of two C-H bonds offers an efficient strategy for the formation of a biaryl C-C bond; however, fundamental challenges remain in controlling the reactivity and selectivity for uniting a given pair of substrates4,5. Biocatalytic oxidative cross-coupling reactions have the potential to overcome limitations inherent to numerous small-molecule-mediated methods by providing a paradigm with catalyst-controlled selectivity6. Here we disclose a strategy for biocatalytic cross-coupling through oxidative C-C bond formation using cytochrome P450 enzymes. We demonstrate the ability to catalyse cross-coupling reactions on a panel of phenolic substrates using natural P450 catalysts. Moreover, we engineer a P450 to possess the desired reactivity, site selectivity and atroposelectivity by transforming a low-yielding, unselective reaction into a highly efficient and selective process. This streamlined method for constructing sterically hindered biaryl bonds provides a programmable platform for assembling molecules with catalyst-controlled reactivity and selectivity.


Assuntos
Biocatálise , Técnicas de Química Sintética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxidantes/química , Carbono/química , Cumarínicos/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Hidrogênio/química , Oxirredução , Especificidade por Substrato
2.
Biophys J ; 123(1): 57-67, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37978802

RESUMO

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Fosforilação , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Ligação Proteica , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
3.
J Chem Inf Model ; 64(9): 3923-3932, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615325

RESUMO

The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.


Assuntos
Simulação de Dinâmica Molecular , Pró-Proteína Convertase 9 , Ligação Proteica , Receptores de LDL , Receptores de LDL/metabolismo , Receptores de LDL/química , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/química , Regulação Alostérica , Humanos , Conformação Proteica , Termodinâmica , Inibidores de PCSK9
4.
Biochemistry ; 62(5): 989-999, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802529

RESUMO

Phosphorylation is a key post-translational modification that alters the functional state of many proteins. The Escherichia coli toxin HipA, which phosphorylates glutamyl-tRNA synthetase and triggers bacterial persistence under stress, becomes inactivated upon autophosphorylation of Ser150. Interestingly, Ser150 is phosphorylation-incompetent in the crystal structure of HipA since it is deeply buried ("in-state"), although in the phosphorylated state it is solvent exposed ("out-state"). To be phosphorylated, a minor population of HipA must exist in the phosphorylation-competent "out-state" (solvent-exposed Ser150), not detected in the crystal structure of unphosphorylated HipA. Here we report a molten-globule-like intermediate of HipA at low urea (∼4 kcal/mol unstable than natively folded HipA). The intermediate is aggregation-prone, consistent with a solvent exposed Ser150 and its two flanking hydrophobic neighbors (Val/Ile) in the "out-state". Molecular dynamics simulations showed the HipA "in-out" pathway to contain multiple free energy minima with an increasing degree of Ser150 solvent exposure with the free energy difference between the "in-state" and the metastable exposed state(s) to be ∼2-2.5 kcal/mol, with unique sets of hydrogen bonds and salt bridges associated with the metastable loop conformations. Together, the data clearly identify the existence of a phosphorylation-competent metastable state of HipA. Our results not only suggest a mechanism of HipA autophosphorylation but also add to a number of recent reports on unrelated protein systems where the common proposed mechanism for phosphorylation of buried residues is their transient exposure even without phosphorylation.


Assuntos
Proteínas de Escherichia coli , Fosforilação , Proteínas de Escherichia coli/química , Escherichia coli/genética , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo
5.
Langmuir ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36628525

RESUMO

Oligomers of PDMS (M1), polyFast (M2), modified PVEE (M3 and M4), and two new molecules with cyclic cores (M5 and M6) were studied to understand their ability to thicken the sc-CO2 at 377 K and 55 MPa, without any cosolvent. It was observed that PDMS and polyFast behaved in the known ways. PDMS does not improve the viscosity of the system without a cosolvent and PolyFast enhances the viscosity by a large margin. M3 and M4 also have not improved the viscosity significantly even with the introduction of a styrene component, but which has improved their solubilities in the fluid. M5 and M6, however, are observed to have enhanced the viscosity similar to that of polyFast due to their structural advantage and π-π interactions between the molecules. These molecules were also tested for their synthesizability, and their synthesis is found to be moderately easy.

6.
J Am Chem Soc ; 144(12): 5214-5225, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290055

RESUMO

Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.


Assuntos
Enzimas , Biocatálise , Enzimas/metabolismo
7.
Acc Chem Res ; 54(6): 1374-1384, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33600149

RESUMO

The total synthesis of structurally complex natural products has challenged and inspired generations of chemists and remains an exciting area of active research. Despite their history as privileged bioactivity-rich scaffolds, the use of natural products in drug discovery has waned. This shift is driven by their relatively low abundance hindering isolation from natural sources and the challenges presented by their synthesis. Recent developments in biocatalysis have resulted in the application of enzymes for the construction of complex molecules. From the inception of the Narayan lab in 2015, we have focused on harnessing the exquisite selectivity of enzymes alongside contemporary small molecule-based approaches to enable concise chemoenzymatic routes to natural products.We have focused on enzymes from various families that perform selective oxidation reactions. For example, we have targeted xyloketal natural products through a strategy that relies on a chemo- and site-selective biocatalytic hydroxylation. Members of the xyloketal family are characterized by polycyclic ketal cores and demonstrate potent neurological activity. We envisioned assembling a representative xyloketal natural product (xyloketal D) involving a biocatalytically generated ortho-quinone methide intermediate. The non-heme iron (NHI) dependent monooxygenase ClaD was used to perform the benzylic hydroxylation of a resorcinol precursor, the product of which can undergo spontaneous loss of water to form an ortho-quinone methide under mild conditions. This intermediate was trapped using a chiral dienophile to complete the total synthesis of xyloketal D.A second class of biocatalytic oxidation that we have employed in synthesis is the hydroxylative dearomatization of resorcinol compounds using flavin-dependent monooxygenases (FDMOs). We anticipated that the catalyst-controlled site- and stereoselectivity of FDMOs would enable the total synthesis of azaphilone natural products. Azaphilones are bioactive compounds characterized by a pyranoquinone bicyclic core and a fully substituted chiral carbon atom. We leveraged the stereodivergent reactivity of FDMOs AzaH and AfoD to achieve the enantioselective synthesis of trichoflectin enantiomers, deflectin 1a, and lunatoic acid. We also leveraged FDMOs to construct tropolone and sorbicillinoid natural products. Tropolones are a structurally diverse class of bioactive molecules characterized by an aromatic cycloheptatriene core bearing an α-hydroxyketone moiety. We developed a two-step biocatalytic cascade to the tropolone natural product stipitatic aldehyde using the FDMO TropB and a NHI monooxygenase TropC. The FDMO SorbC obtained from the sorbicillin biosynthetic pathway was used in the concise total synthesis of a urea sorbicillinoid natural product.Our long-standing interest in using enzymes to carry out C-H hydroxylation reactions has also been channeled for the late-stage diversification of complex scaffolds. For example, we have used Rieske oxygenases to hydroxylate the tricyclic core common to paralytic shellfish toxins. The systemic toxicity of these compounds can be reduced by adding hydroxyl and sulfate groups, which improves their properties and potential as therapeutic agents. The enzymes SxtT, GxtA, SxtN, and SxtSUL were used to carry out selective C-H hydroxylation and O-sulfation in saxitoxin and related structures. We conclude this Account with a discussion of existing challenges in biocatalysis and ways we can currently address them.


Assuntos
Produtos Biológicos/metabolismo , Enzimas/metabolismo , Biocatálise , Produtos Biológicos/química , Estrutura Molecular
8.
Langmuir ; 38(10): 3105-3112, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245073

RESUMO

Both electrostatic and hydrophobic interactions play pivotal roles in ligand-surfactant binding interaction, especially for ionic surfactants. While much studies have been reported in the micellar region, less attention has been paid on such interactions at a low (premicellar) surfactant concentration. We here study the interaction between the cationic dye rhodamine 6G (R6G) with surfactants of different charge types: anionic SDS, cationic CTAB, and nonionic Tx 100 using absorption and emission spectroscopy. We identify that R6G forms dimeric aggregates at a premicellar concentration of SDS. Formation of aggregates is also confirmed from classical simulation measurements. CTAB and Tx 100 do not form any such aggregate, presumably owing to unfavorable electrostatic interactions. For a molecular-level understanding, we perform two-photon absorption (TPA) spectroscopy for the same systems. TPA allows us to calculate the two-photon absorption cross section and subsequently the change in the dipole moment (Δµ) between ground and excited states of the dye. We calculate the Δµ and observe that it passes through a maximum at a surfactant concentration half of the critical micelle concentration of SDS. This observation imparts support to earlier quantum mechanical calculation, which infers deviation from the parallel orientation of the dye during surfactant-induced aggregation. We extended our measurements and varied the carbon chain length of the anionic surfactant, and we found that all of them exhibit a maximum in Δµ, while their relative magnitude is dependent on the surfactant carbon chain length.


Assuntos
Surfactantes Pulmonares , Tensoativos , Carbono , Cátions , Cetrimônio , Excipientes , Micelas , Simulação de Dinâmica Molecular , Tensoativos/química
9.
J Am Chem Soc ; 143(12): 4801-4808, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750118

RESUMO

Conformationally flexible ancillary ligands have been widely used in transition metal catalysis. However, the benefits of using flexible ligands are often not well understood. We performed density functional theory (DFT) and experimental studies to elucidate the mechanisms and the roles of conformationally flexible α,α,α',α'-tetraaryldioxolane-4,5-dimethanol (TADDOL)-derived ligands on the reactivity and selectivity in the Rh-catalyzed asymmetric hydroboration (CAHB) of alkenes. DFT calculations and deuterium labeling studies both indicated that the most favorable reaction pathway involves an unusual tertiary C-B bond reductive elimination to give high levels of regio- and enantioselectivities. Here, the asymmetric construction of the fully substituted carbon center is promoted by the flexibility of the TADDOL backbone, which leads to two ligand conformations with distinct steric environments in different steps of the catalytic cycle. A pseudo-chair ligand conformation is preferred in the rate-determining tertiary benzylic C-B reductive elimination. The less hindered steric environment with this conformation allows the benzylic group to bind to the Rh center in an η3 fashion, which stabilizes the C-B reductive elimination transition state. On the other hand, a pseudo-boat ligand conformation is involved in the selectivity-determining alkene migratory insertion step, where the more anisotropic steric environment leads to greater ligand-substrate steric interactions to control the π-facial selectivity. Thus, using a conformationally flexible ligand is beneficial for enhancing both reactivity and enantioselectivity by controlling ligand-substrate interactions in two different elementary steps.


Assuntos
Alcenos/química , Boranos/síntese química , Organofosfonatos/química , Boranos/química , Catálise , Ligantes , Conformação Molecular , Estereoisomerismo
10.
J Phys Chem A ; 125(1): 57-64, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33166155

RESUMO

Formation of a probe-solvent network resulting in unusually high fluorescence anisotropy (FA) of an excited-state intramolecular proton transfer (ESIPT) probe, 3-hydroxyflavone (3HF), in water prompted us to explore the solvation patterns on its 7-hydroxy (7HF) and 6-hydroxy (6HF) positional analogues. In the present study, it was observed that 7HF exhibits a lower FA than 3HF does in water, implying that the volume of the 7HF-water cluster is less than that of the 3HF-water cluster. Experimental and computational results led us to propose that 7HF forms its water cluster at the molecular periphery in contrast to the projected-out structure in case of the 3HF-water cluster. Density functional theory (DFT)-based quantum chemical calculations provide an approach for the differential solvation patterns of 3HF and 7HF. 6HF, a non-ESIPT probe, exhibits very low FA in water compared with both 3HF and 7HF. This study demonstrates that proper positioning of the hydroxyl group and its participation in the extended π-conjugation within the molecule dictate the formation of the solvated cluster endorsing directed solvation.

11.
J Chem Phys ; 154(21): 215101, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240976

RESUMO

Photoisomerization in the retinal leads to a channel opening in rhodopsins that triggers translocation or pumping of ions/protons. Crystal structures of rhodopsins contain several structurally conserved water molecules. It has been suggested that water plays an active role in facilitating the ion pumping/translocation process by acting as a lubricant in these systems. In this paper, we systematically investigate the localization, structure, dynamics, and energetics of the water molecules along the channel for the resting/dark state of KR2 rhodopsin. By employing several microseconds long atomistic molecular dynamics simulation of this trans-membrane protein system, we demonstrate the presence of five distinct water containing pockets/cavities separated by gateways controlled by protein side-chains. There exists a strong hydrogen bonded network involving these buried water molecules and functionally important key residues. We present evidence of significant structural and dynamical heterogeneity in the water molecules present in these cavities, with very rare exchange between them. The exchange time scale of such buried water with the bulk has an extremely wide range, from tens of nanoseconds to >1.5 µs. The translational and rotational dynamics of buried water are found to be strongly dependent on the protein cavity size and local interactions with a classic signature of trapped diffusion and rotational anisotropy.


Assuntos
Flavobacteriaceae/química , Simulação de Dinâmica Molecular , Rodopsina/química , Sódio/química , Conformação Proteica , Rodopsina/metabolismo , Sódio/metabolismo , Água/química , Água/metabolismo
12.
Chem Soc Rev ; 49(22): 8137-8155, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32701110

RESUMO

Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Biocatálise , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
13.
Proc Natl Acad Sci U S A ; 114(29): E5825-E5834, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28634294

RESUMO

Allosteric effect implies ligand binding at one site leading to structural and/or dynamical changes at a distant site. PDZ domains are classic examples of dynamic allostery without conformational changes, where distal side-chain dynamics is modulated on ligand binding and the origin has been attributed to entropic effects. In this work, we unearth the energetic basis of the observed dynamic allostery in a PDZ3 domain protein using molecular dynamics simulations. We demonstrate that electrostatic interaction provides a highly sensitive yardstick to probe the allosteric modulation in contrast to the traditionally used structure-based parameters. There is a significant population shift in the hydrogen-bonded network and salt bridges involving side chains on ligand binding. The ligand creates a local energetic perturbation that propagates in the form of dominolike changes in interresidue interaction pattern. There are significant changes in the nature of specific interactions (nonpolar/polar) between interresidue contacts and accompanied side-chain reorientations that drive the major redistribution of energy. Interestingly, this internal redistribution and rewiring of side-chain interactions led to large cancellations resulting in small change in the overall enthalpy of the protein, thus making it difficult to detect experimentally. In contrast to the prevailing focus on the entropic or dynamic effects, we show that the internal redistribution and population shift in specific electrostatic interactions drive the allosteric modulation in the PDZ3 domain protein.


Assuntos
Domínios PDZ , Proteínas/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Alostérica , Sítios de Ligação , Entropia , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Eletricidade Estática
14.
Langmuir ; 34(17): 5138-5148, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29641903

RESUMO

The molecular thermodynamics and kinetics of CO2 sorption in Polyethylenimine (PEI) melt have been investigated systematically using GCMC and MD simulations. We elucidate presence of significant structural and dynamic heterogeneity associated with the overall absorption process. CO2 adsorption in a PEI membrane shows a distinct two-stage process of a rapid CO2 adsorption at the interfaces (hundreds of picoseconds) followed by a significantly slower diffusion limited release toward the interior bulk regions of PEI melt (hundreds of nanoseconds to microseconds). The spatial heterogeneity of local structural features of the PEI chains lead to significantly heterogeneous absorption characterized by clustering and trapping of CO2 molecules that then lead to subdiffusive motion of CO2. In the complex interplay of interaction and entropy, the latter emerges out to be the major determining factor with significantly higher solubility of CO2 near the interfaces despite having lower density of binding amine groups. Regions having higher free-volume (entropically favorable) viz. interfaces, pores and loops demonstrate higher CO2 capture ability. Various local structural features of PEI conformations, for example, inter- and intrachain loops, pores of different radii, and di- or tricoordinated pores are explored for their effects on the varying CO2 adsorption abilities.

15.
Biochemistry ; 56(6): 833-844, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28102071

RESUMO

The structural basis of pathways of misfolding of a cellular prion (PrPC) into the toxic scrapie form (PrPSC) and identification of possible intermediates (e.g., PrP*) still eludes us. In this work, we have used a cumulative ∼65 µs of replica exchange molecular dynamics simulation data to construct the conformational free energy landscapes and capture the structural and thermodynamic characteristics associated with various stages of the thermal denaturation process in human prion protein. The temperature-dependent free energy surfaces consist of multiple metastable states stabilized by non-native contacts and hydrogen bonds, thus rendering the protein prone to misfolding. We have been able to identify metastable conformational states with high ß-content (∼30-40%) and low α-content (∼10-20%) that might be precursors of PrPSC oligomer formation. These conformations also involve participation of the unstructured N-terminal domain, and its role in misfolding has been investigated. All the misfolded or partially unfolded states are quite compact in nature despite having large deviations from the native structure. Although the number of native contacts decreases dramatically at higher temperatures, the radius of gyration and number of intraprotein hydrogen bonds and contacts remain relatively unchanged, leading to stabilization of the misfolded conformations by non-native interactions. Our results are in good agreement with the established view that the C-terminal regions of the second and third helices (H2 and H3, respectively) of mammal prions might be the Achilles heels of their stability, while separation of B1-H1-B2 and H2-H3 domains seems to play a key role, as well.


Assuntos
Modelos Moleculares , Fragmentos de Peptídeos/química , Proteínas PrPC/química , Proteínas Priônicas/química , Bases de Dados de Proteínas , Transferência de Energia , Temperatura Alta/efeitos adversos , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Proteínas Priônicas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Propriedades de Superfície
16.
J Am Chem Soc ; 139(17): 6066-6069, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28414243

RESUMO

Highly enantioselective rhodium-catalyzed hydroboration of allylic phosphonates by pinacolborane affords chiral tertiary boronic esters. The ß-borylated phosphonates are readily converted to chiral ß- and γ-hydroxyphosphonates and aminophosphonates and to phosphonates bearing a quaternary carbon stereocenter. The utility of the latter is illustrated by the synthesis of (S)-(+)-bakuchiol methyl ether.


Assuntos
Alcenos/química , Ácidos Borônicos/síntese química , Ésteres/síntese química , Éteres Metílicos/síntese química , Organofosfonatos/química , Fenóis/síntese química , Ácidos Borônicos/química , Catálise , Ésteres/química , Éteres Metílicos/química , Estrutura Molecular , Fenóis/química , Ródio/química
17.
Proc Natl Acad Sci U S A ; 111(31): 11353-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049404

RESUMO

Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on mechanisms of charge transport and displacement processes. A recent example is provided by studies of cytochrome c oxidase. However, the interpretation of the observed voltage changes in terms of the number of charge equivalents and transfer distances is far from being trivial or unique. Using continuum approaches to describe the voltage generation may involve significant uncertainties and reliable microscopic simulations are not yet available. Here, we attempt to solve this problem by using a coarse-grained model of membrane proteins, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The model evaluates the gating charges and the electrode potentials (c.f. measured voltage) upon charge transfer within the protein. The accuracy of the model is evaluated by a comparison of measured voltage changes associated with electron and proton transfer in bacterial photosynthetic reaction centers to those calculated using our coarse-grained model. The calculations reproduce the experimental observations and thus indicate that the method is of general use. Interestingly, it is found that charge-separation processes with different spatial directions (but the same distance perpendicular to the membrane) can give similar observed voltage changes, which indicates that caution should be exercised when using simplified interpretation of the relationship between charge displacement and voltage changes.


Assuntos
Eletricidade , Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Eletrodos , Lasers , Lipídeos/química , Proteínas de Membrana/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Termodinâmica
18.
Phys Chem Chem Phys ; 18(31): 21767-79, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27435512

RESUMO

The properties of water in a confined environment can be drastically different than the bulk water. In a confined system, e.g. the interior of a reverse micelle, there exist at least two distinct regions namely "interfacial water" characterized by markedly slower dynamics, and "core water", which may resemble bulk water for a larger size of the water pool. Using atomistic molecular dynamics simulations, we systematically investigate the presence of bulk-like water in AOT reverse micelles (RMs) with varying size given by w0 = [H2O]/[AOT] = 10, 15 and 20. In order to understand the effect of the negatively charged interface of the RM, we have performed control studies for the model systems of water-in-oil (isooctane) nanodroplets with the same size of the water pool as the RM systems. In order to quantify the deviations from bulk-like behavior, we have used three kinds of structural order parameters, namely (i) number density to probe the local translational ordering, (ii) tetrahedral order and hydrogen bond distribution to probe the local orientational ordering, and (iii) dipolar orientation relative to the radial vector to capture the global orientational ordering of the water dipoles. We demonstrate that the size of the "core water" region that resembles bulk water decreases in the above order, i.e. orientational order parameters of water molecules are perturbed by the charged interface to a larger length scale as compared to the translational order. We have compared the translational and rotational dynamics of the water molecules for the interfacial and core regions to find that the slower dynamics persists even for the core water for the size range that we have studied although to a much lesser extent as compared to the interfacial water. Moreover, we demonstrate that the hydrophobic interface in the water-in-oil nanodroplets has a much weaker effect on the structure and dynamics of the confined water molecules as compared to the anionic RMs. Thus, the major contribution towards the structural ordering and slow dynamics of water in a charged RM system would originate from the strong electrostatic and hydrogen bonded interactions with the interface, and not due to the spatial confinement effect.

19.
J Chem Phys ; 145(3): 034503, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448892

RESUMO

We present a comparative study of the glass forming ability of binary systems with varying composition, where the systems have similar global crystalline structure (CsCl+fcc). Biased Monte Carlo simulations using umbrella sampling technique show that the free energy cost to create a CsCl nucleus increases as the composition of the smaller particles is decreased. We find that systems with comparatively lower free energy cost to form CsCl nucleus exhibit more pronounced pre-crystalline demixing near the liquid/crystal interface. The structural frustration between the CsCl and fcc crystal demands this demixing. We show that closer to the equimolar mixture, the entropic penalty for demixing is lower and a glass forming system may crystallize when seeded with a nucleus. This entropic penalty as a function of composition shows a non-monotonic behaviour with a maximum at a composition similar to the well known Kob-Anderson (KA) model. Although the KA model shows the maximum entropic penalty and thus maximum frustration against CsCl formation, it also shows a strong tendency towards crystallization into fcc lattice of the larger "A" particles which can be explained from the study of the energetics. Thus for systems closer to the equimolar mixture although it is the requirement of demixing which provides their stability against crystallization, for KA model it is not demixing but slow dynamics and the presence of the "B" particles make it a good glass former. The locally favoured structure around "B" particles is quite similar to the CsCl structure and the incompatibility of CsCl and fcc hinders the fcc structure growth in the KA model. Although the glass forming binary systems studied here are quite similar, differing only in composition, we find that their glass forming ability cannot be attributed to a single phenomenon.

20.
Langmuir ; 31(11): 3402-12, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25715114

RESUMO

Glycopolypeptide-based polymersomes have promising applications as vehicles for targeted drug delivery because they are capable of encapsulating different pharmaceuticals of diverse polarity as well as interacting with specific cell surfaces due to their hollow structural morphology and bioactive surfaces. We have synthesized glycopolypeptide-b-poly(propylene oxide) by ROP of glyco-N-carboxyanhydride (NCA) using the hydrophobic amine-terminated poly(propylene oxide) (PPO) as the initiator. This block copolymer is composed of an FDA-approved PPO hydrophobic block in conjugation with hydrophilic glycopolypeptides which are expected to be biocompatible. We demonstrate the formation of glycopolypeptide-based polymersomes from the self-assembly of glycopolypeptide-b-poly(propylene oxide) in which the presence of an ordered helical glycopolypeptide segment is required for their self-assembly into spherical nanoscale (∼50 nm) polymersomes. The polymersomes were characterized in detail using a variety of techniques such as TEM, AFM, cryo-SEM, and light-scattering measurements. As a model for drugs, both hydrophobic (RBOE) and hydrophilic (calcein) dyes have been incorporated within the polymersomes from solution. To substantiate the simultaneous entrapment of the two dyes, spectrally resolved fluorescence microscopy was performed on the glycopeptide polymersomes cast on a glass substrate. We show that it is possible to visualize individual nanoscale polymersomes and effectively probe the dyes' colocalization and energy-transfer behaviors therein as well as investigate the variation in dual-dye encapsulation over a large number of single polymersomes. Finally, we show that the galactose moieties present on the surface can specifically recognize lectin RCA120, which reveals that the polymersomes' surface is indeed biologically active.


Assuntos
Polímeros/química , Propilenoglicóis/química , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA