Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Langmuir ; 40(15): 8126-8132, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38568020

RESUMO

The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.


Assuntos
Fosfatidilgliceróis , Sinais Direcionadores de Proteínas , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo , Colesterol/química , Peptídeos
2.
Langmuir ; 39(12): 4439-4449, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36931902

RESUMO

Membrane fusion is a common course in innumerable biological processes that helps in the survival of eukaryotes. Enveloped viruses utilize this process to enter the host cells. Generally, the membrane lipid compositions play an important role in membrane fusion by modulating the membrane's physical properties and the behavior of membrane proteins in the cellular milieu. In this work, we have demonstrated the role of polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, on the organization, dynamics, and fusion of homogeneous and heterogeneous membranes. We have exploited arrays of steady-state and time-resolved fluorescence spectroscopic methods and polyethylene glycol-induced membrane fusion assay to elucidate the behavior of EPA and DHA on dioleoyl phosphatidylcholine (DOPC)/cholesterol (CH) homogeneous and DOPC/sphingomyelin/CH heterogeneous membranes. Our results suggest that EPA and DHA display differential effects on two different membranes. The effects of PUFAs in homogeneous membranes are majorly attributed to their flexible chain dynamics, whereas the ability of PUFA-induced cholesterol transfer from the lo to the ld phase rules their behavior in heterogeneous membranes. Overall, our results provide detailed information on the effect of PUFAs on homogeneous and heterogeneous membranes.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/farmacologia , Membranas/metabolismo , Ácidos Graxos Insaturados/química , Colesterol/química
3.
Langmuir ; 39(49): 17713-17722, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38031897

RESUMO

Enveloped viruses infect host cells via protein-mediated membrane fusion. However, insights into the microscopic rearrangement induced by the viral proteins and peptides have not yet emerged. Here, we report a new methodology to extract viral fusion peptide (FP)-mediated biomembrane dynamical nanodomain fusion parameter, λ, based on stimulated emission depletion microscopy coupled with fluorescence correlation spectroscopy. We also define another dynamical parameter membrane gradient, defined in terms of the ratio of average lipid diffusion coefficients across dynamic crossover length scales, ξ. Significantly, we observe that λ as well as these mobility gradients are larger in the stiffer liquid-ordered (Lo) phase compared to the liquid-disordered phase and are more effective at the smaller nanodomain interfaces, which are only present in the Lo phase. The results could possibly help to resolve a long-standing puzzle about the enhanced fusogenicity of FP in the Lo phase. Results obtained from the diffusion results have been correlated with the human immunodeficiency virus gp41 FP-induced membrane fusion.


Assuntos
Proteína gp41 do Envelope de HIV , Internalização do Vírus , Humanos , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Fusão de Membrana , Peptídeos/farmacologia
4.
Int Microbiol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702858

RESUMO

Vibrio parahaemolyticus causes seafood-borne gastroenteritis infection in human which can even lead to death. The pathogenic strain of V. parahaemolyticus secretes different types of virulence factors that are directly injected into the host cell by a different type of secretion system which helps bacteria to establish its own ecological niche within the organism. Therefore, the aim of this study was to isolate the extracellular secreted proteins from the trh positive strain of V. parahaemolyticus and identify them using two-dimensional gel electrophoresis and MALDI-TOFMS/MS. Seventeen different cellular proteins viz, Carbamoyl-phosphate synthase, 5-methyltetrahydropteroyltriglutamate, tRNA-dihydrouridine synthase, Glycerol-3-phosphate dehydrogenase, Orotidine 5'-phosphate decarboxylase, Molybdenum import ATP-binding protein, DnaJ, DNA polymerase IV, Ribosomal RNA small subunit methyltransferase G, ATP synthase subunit delta and gamma, Ribosome-recycling factor, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, tRNA pseudouridine synthase B, Ditrans, polycis-undecaprenyl-diphosphate synthase, Oxygen-dependent coproporphyrinogen-III oxidase, and Peptide deformylase 2 were identified which are mainly involved in different metabolic and biosynthetic pathways. Furthermore, the molecular function of the identified proteins were associated with catalytic activity, ligase activity, transporter, metal binding, and ATP synthase when they are intercellular. However, to understand the importance of these secreted proteins in the infection and survival of bacteria inside the host cell, pathogen-host protein-protein interactions (PPIs) were carried out which identified the association of eight secreted proteins with 41 human proteins involved in different cellular pathways, including ubiquitination degradation, adhesion, inflammation, immunity, and programmed cell death. The present study provides unreported strategies on host-cell environment's survival and adaptation mechanisms for the successful establishment of infections and intracellular propagation.

5.
Soft Matter ; 19(4): 733-742, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36617878

RESUMO

Membrane fusion is one of the important processes for the survival of eukaryotic cells and the entry of enveloped viruses into the host cells. Lipid composition plays a crucial role by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. The diversity of the lipid acyl chain in its length and degree of unsaturation originates from the variation in free fatty acids (FFAs). We have studied the effect of linoleic (LA) and alpha-linolenic (ALA) acids on the depth-dependent organization, dynamics, and fusion of DOPC/DOPE (70/30 mol%) membranes utilizing steady-state and time-resolved fluorescence spectroscopic methods. Our results suggest that membranes with 5 mol% LA stabilize the stalk-intermediate and promote lipid mixing at the early stage of the process, i.e., the fusion follows the classical stalk model. Conversely, the extents of lipid and content mixing at the stalk intermediate are similar in the presence of 5 mol% of ALA, indicating the fusion mechanism as a nonclassical one like in the DOPC/DOPE (70/30 mol%) membranes. Our results provide an in-depth insight into the effect of the increasing degree of fatty acid tail unsaturation on membrane organization and dynamics and their impact on the membrane fusion mechanism.


Assuntos
Ácidos Graxos não Esterificados , Fusão de Membrana , Ácidos Graxos , Conformação Molecular
6.
Phys Chem Chem Phys ; 25(11): 7815-7824, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857640

RESUMO

N-terminal residues (770-788) of the S2 glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) have been recognized as a potential fusion peptide that can be involved in the entry of the virus into the host cell. Membrane composition plays an important role in lipid-peptide interaction and the oligomeric status of the peptide. SARS-CoV fusion peptide (S2 fusion peptide) is known to undergo cholesterol-dependent oligomerization in the membrane; however, its significance in membrane fusion is still speculative. This study aimed to investigate the oligomerization of SARS-CoV fusion peptide in a membrane containing phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol, with varying concentrations of cholesterol, and to evaluate peptide-induced membrane fusion to correlate the importance of peptide oligomerization with membrane fusion. Peptide-induced modulation of membrane organization and dynamics was explored by steady-state and time-resolved fluorescence spectroscopic measurements using depth-dependent probes. The results clearly demonstrated the induction of S2 fusion peptide oligomerization by membrane cholesterol and the higher efficiency of the oligomer in promoting membrane fusion compared to its monomeric counterpart. Cholesterol-dependent peptide oligomerization and membrane fusion are important aspects of viral infection since the cholesterol level can change with age as well as with the onset of various pathophysiological conditions.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Peptídeos/química , Colesterol/metabolismo
7.
J Membr Biol ; 255(2-3): 211-224, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435451

RESUMO

Membrane fusion is an essential process for the survival of eukaryotes and the entry of enveloped viruses into host cells. A proper understanding of the mechanism of membrane fusion would provide us a handle to manipulate several biological pathways, and design efficient vaccines against emerging and re-emerging viral infections. Although fusion proteins take the central stage in catalyzing the process, role of lipid composition is also of paramount importance. Lipid composition modulates membrane organization and dynamics and impacts the lipid-protein (peptide) interaction. Moreover, the intrinsic curvature of lipids has strong impact on the formation of stalk and hemifusion diaphragm. Detection of transiently stable intermediates remains the bottleneck in the understanding of fusion mechanism. In order to circumvent this challenge, analytical methods can be employed to determine the kinetic parameters from ensemble average measurements of observables, such as lipid mixing, content mixing, and content leakage. The current review aims to present an analytical method that would aid our understanding of the fusion mechanism, provides a better insight into the role of lipid shape, and discusses the interplay of lipid and peptide in membrane fusion.


Assuntos
Fusão de Membrana , Peptídeos , Cinética , Lipídeos/química
8.
Microb Pathog ; 164: 105436, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121070

RESUMO

Vibrio parahaemolyticus is a zoonotic bacterium that causes infections in shellfish, fish and higher vertebrates as well as in humans. The Tdh and Trh positive strains of V. parahaemolyticus are generally considered as major virulent strains. The pathogenic mechanisms of Trh positive strain of V. parahaemolyticus are poorly understood. Therefore, in the present study Indian Major Carp, Labeo rohita was intraperitoneally challenged with a Trh positive strain of V. parahaemolyticus below lethal dose 50 (LD50) to understand the innate immune response. A significant upregulation in the respiratory burst activity, myeloperoxidase activity and lysozyme activity of serum was observed in the challenged fishes. However, the serum alpha (α) 2-macro globulin activity and antiprotease activity remained unaltered in the infected fish. The relative expression study of some immune-related genes showed that after the experimental challenge the expression of immune-related genes viz., Toll-like receptor (TLR), Nucleotide-binding oligomerization domain (NOD), Interleukin-1ß (IL-ß), Interleukin-6 (IL-6), Tumor necrosis factor α (TNFα), Inducible nitric oxide synthase (iNOS), Complement factor 3a (C3a) and Heat shock proteins 70 (Hsp70) was upregulated during infection. Furthermore, overexpression of nuclear factor kappa light chain enhancer of activated B cells (NF-κß), Myeloid differentiation primary response 88 (MyD88), Mitogen-activated protein kinases (MAPK) and cysteine-aspartic proteases (Casp 1) was also observed after post-infection which clearly indicated that Trh positive V. parahaemolyticus activates MAPK pathway. The present study strengthens the understanding of molecular pathogenesis and provides insights on gene regulation during infection with Trh positive V. parahaemolyticus.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Animais , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Proteínas Quinases Ativadas por Mitógeno , Frutos do Mar/microbiologia , Vibrioses/microbiologia , Vibrioses/veterinária , Vibrio parahaemolyticus/genética
9.
World J Microbiol Biotechnol ; 38(10): 177, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35934729

RESUMO

The ability of bacteria to adapt to the external environment is fundamental for their survival. A halotolerant microorganism Enterococcus faecalis able to grow under high salt stress conditions was isolated in the present study. The SDS-PAGE analysis of the secretome showed a protein band with a molecular weight of 28 kDa, gradually increased with an increase in salt concentration, and the highest intensity was observed at 15% salt stress condition. LC-MS/MS analysis of this particular band identified fourteen different proteins, out of which nine proteins were uncharacterized. Further, the function of uncharacterized proteins was predicted based on structure-function relationship using a reverse template search approach deciphering uncharacterized protein into type III polyketide synthases, stress-induced protein-1, Eed-h3k79me3, ba42 protein, 3-methyladenine DNA glycosylase, Atxa protein, membrane-bound respiratory hydrogenase, type-i restriction-modification system methylation subunit and ManxA. STRING network analysis further a showed strong association among the proteins. The processes predicted involvement of these proteins in signal transduction, ions transport, synthesis of the protective layer, cellular homeostasis and regulation of gene expression and different metabolic pathways. Thus, the fourteen proteins identified in the secretome play an essential role in maintaining cellular homeostasis in E. faecalis under high-salinity stress. This may represent a novel and previously unreported strategy by E. faecalis to maintain their normal growth and physiology under high salinity conditions.


Assuntos
Enterococcus faecalis , Tolerância ao Sal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Enterococcus faecalis/metabolismo , Tolerância ao Sal/genética , Secretoma , Espectrometria de Massas em Tandem
10.
Biochemistry ; 60(8): 559-562, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33569952

RESUMO

Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20-25 amino acid sequence at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a "fusion peptide". However, severe acute respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.


Assuntos
Colesterol/metabolismo , Fusão de Membrana/fisiologia , Fragmentos de Peptídeos/metabolismo , SARS-CoV-2/metabolismo , Sequência de Aminoácidos , COVID-19/genética , COVID-19/metabolismo , Colesterol/genética , Humanos , Fragmentos de Peptídeos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , SARS-CoV-2/genética , Internalização do Vírus
11.
Langmuir ; 37(11): 3477-3489, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689373

RESUMO

Membrane fusion is the primary step in the entry of enveloped viruses into the host cell. Membrane composition modulates the membrane fusion by changing the organization dynamics of the fusion proteins, peptides, and membranes. The asymmetric lipid compositions of the viral envelope and the host cell influence the membrane fusion. Cholesterol is an important constituent of mammalian cells and plays a vital role in the entry of several viruses. In our pursuit of developing peptide-based general fusion inhibitors, we have previously shown that a coronin 1-derived peptide, TG-23, inhibited polyethylene glycol-induced fusion between symmetric membranes without cholesterol. In this work, we have studied the effect of TG-23 on the polyethylene glycol-mediated fusion between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (50/30/10/10 mol %) membranes and between DOPC/DOPE/DOPG (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (40/30/10/20 mol %) membranes. Our results demonstrate that the TG-23 peptide inhibited the fusion between membranes containing 0 and 10 mol % cholesterol though the efficacy is less than that of symmetric fusion between membranes devoid of cholesterol, and the inhibitory efficacy becomes negligible in the fusion between membranes containing 0 and 20 mol % cholesterol. Several steady-state and time-resolved fluorescence spectroscopic techniques have been successfully utilized to evaluate the organization, dynamics, and membrane penetration of the TG-23 peptide. Taken together, our results demonstrate that the reduction of the inhibitory effect of TG-23 in asymmetric membrane fusion containing cholesterol of varying concentrations is not due to the altered peptide structure, organization, and dynamics, rather owing to the intrinsic negative curvature-inducing property of cholesterol. Therefore, the membrane composition is an added complexity in the journey of developing peptide-based membrane fusion inhibitors.

12.
Eur Biophys J ; 50(5): 671-685, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33564930

RESUMO

Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, Spinocerebellar ataxia, and Type-II diabetes. Interestingly, it has been noted that the smaller oligomers formed by IDPs are more toxic to cells than their larger aggregates. This necessitates the development of techniques that can detect the smaller oligomers formed by IDPs for diagnosis of such diseases during their early onset. Fluorescence-based spectroscopic and microscopic techniques are highly effective as compared to other techniques for the evaluation of protein oligomerization, organization, and dynamics. In this review, we discuss several fluorescence-based techniques including fluorescence/Förster resonance energy transfer (FRET), homo-FRET, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging (FLIM), and photobleaching image correlation spectroscopy (pbICS) that are routinely used to identify protein oligomers in extracellular and intracellular matrices.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Intrinsicamente Desordenadas , Fotodegradação , Espectrometria de Fluorescência
13.
J Membr Biol ; 253(5): 425-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32862236

RESUMO

The emerging and re-emerging viral infections are constant threats to human health and wellbeing. Several strategies have been explored to develop vaccines against these viral diseases. The main effort in the journey of development of vaccines is to neutralize the fusion protein using antibodies. However, significant efforts have been made in discovering peptides and small molecules that inhibit the fusion between virus and host cell, thereby inhibiting the entry of viruses. This class of inhibitors is called entry inhibitors, and they are extremely efficient in reducing viral infection as the entry of the virus is considered as the first step of infection. Nevertheless, these inhibitors are highly selective for a particular virus as antibody-based vaccines. The recent COVID-19 pandemic lets us ponder to shift our attention towards broad-spectrum antiviral agents from the so-called 'one bug-one drug' approach. This review discusses peptide and small molecule-based entry inhibitors against class I, II, and III viruses and sheds light on broad-spectrum antiviral agents.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Fusão de Membrana/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Internalização do Vírus/efeitos dos fármacos , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2
14.
Int J Cancer ; 145(7): 1731-1744, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387881

RESUMO

Discovery and development of new potentially selective anticancer agents are necessary to prevent a global cancer health crisis. Currently, alternative medicinal agents derived from plants have been extensively investigated to develop anticancer drugs with fewer adverse effects. Among them, steroidal alkaloids are conventional secondary metabolites that comprise an important class of natural products found in plants, marine organisms and invertebrates, and constitute a judicious choice as potential anti-cancer leads. Traditional medicine and modern science have shown that representatives from this compound group possess potential antimicrobial, analgesic, anticancer and anti-inflammatory effects. Therefore, systematic and recapitulated information about the bioactivity of these compounds, with special emphasis on the molecular or cellular mechanisms, is of high interest. In this review, we methodically discuss the in vitro and in vivo potential of the anticancer activity of natural steroidal alkaloids and their synthetic and semi-synthetic derivatives. This review focuses on cumulative and comprehensive molecular mechanisms, which will help researchers understand the molecular pathways involving steroid alkaloids to generate a selective and safe new lead compound with improved therapeutic applications for cancer prevention and therapy. In vitro and in vivo studies provide evidence about the promising therapeutic potential of steroidal alkaloids in various cancer cell lines, but advanced pharmacokinetic and clinical experiments are required to develop more selective and safe drugs for cancer treatment.


Assuntos
Alcaloides/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Esteroides/uso terapêutico , Alcaloides/farmacologia , Animais , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metabolismo Secundário , Esteroides/farmacologia , Relação Estrutura-Atividade
15.
J Membr Biol ; 252(4-5): 261-272, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31011762

RESUMO

Membrane fusion, one of the most essential processes in the life of eukaryotes, occurs when two separate lipid bilayers merge into a continuous bilayer and internal contents of two separated membranes mingle. There is a certain class of proteins that assist the binding of the viral envelope to the target host cell and catalyzing fusion. All class I viral fusion proteins contain a highly conserved 20-25 amino-acid amphipathic peptide at the N-terminus, which is essential for fusion activity and is termed as the 'fusion peptide'. It has been shown that insertion of fusion peptides into the host membrane and the perturbation in the membrane generated thereby is crucial for membrane fusion. Significant efforts have been given in the last couple of decades to understand the lipid-dependence of structure and function of the fusion peptide in membranes to understand the role of lipid compositions in membrane fusion. In addition, the lipid compositions further change the membrane physical properties and alter the mechanism and extent of membrane fusion. Therefore, lipid compositions modulate membrane fusion by changing membrane physical properties and altering structure of the fusion peptide.


Assuntos
Membrana Celular , Fusão de Membrana , Lipídeos de Membrana , Peptídeos , Proteínas Virais de Fusão , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
16.
Microb Pathog ; 127: 172-182, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30503957

RESUMO

Vibrio parahaemolyticus is a major seafood-borne pathogen that causes life-threatening gastroenteric diseases in humans through the consumption of contaminated seafoods. V. parahaemolyticus produces different kinds of toxins, including thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), and some effector proteins belonging to the Type 3 Secretion System, out of which TDH and TRH are considered to be the major factors for virulence. Although TRH is one of the major virulent proteins, there is a dearth of understanding about the structural and functional properties of this protein. This study therefore aimed to amplify the full length trh gene from V. parahaemolyticus and perform sequence-based analyses, followed by structural and functional analyses of the TRH protein using different bioinformatics tools. The TRH protein shares significant conservedness with the TDH protein. A multiple sequence alignment of TRH proteins from Vibrio and non-Vibrio species revealed that the TRH protein is highly conserved throughout evolution. The three dimensional (3D) structure of the TRH protein was constructed by comparative modelling and the quality of the predicted model was verified. Molecular dynamics simulations were performed to understand the dynamics, residual fluctuations, and the compactness of the protein. The structure of TRH was found to contain 19 pockets, of which one (pocket ID: 2) was predicted to be important from the view of drug design. Eleven residues (E138, Y140, C151, F158, C161, K162, S163, and Q164), which are reported to actively participate in the formation of the tetrameric structure, were present in this pocket. This study extends our understanding of the structural and functional dynamics of the TRH protein and as well as provides new insights for the treatment and prevention of V. parahaemolyticus infections.


Assuntos
Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular , Vibrio parahaemolyticus/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas Hemolisinas/genética , Hemolíticos/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Vibrio parahaemolyticus/genética
17.
Langmuir ; 34(6): 2344-2351, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29323916

RESUMO

Eugenol is known for its antimicrobial effects against microorganisms responsible for infectious diseases in humans, food-borne pathogens, and oral pathogens. In spite of several reports on the antimicrobial function of eugenol by modulating the structural properties of cell membranes, there is limited information on the influence of eugenol in the lipid membrane. In this work, we explored the effect of eugenol on the organization and dynamics of large unilamellar vesicles (LUVs) of DMPC using the intrinsic fluorescence of eugenol and an extrinsic hydrophobic probe, DPH, in varying phases. The organization and dynamics of the bilayers of DMPC vesicles were monitored by utilizing varieties of steady-state and time-resolved fluorescence measurements. Our results show that eugenol stabilizes the gel phase and elevates the phase-transition temperature of DMPC in a concentration-dependent fashion. Fluorescence lifetime measurements demonstrate that higher eugenol-induced water penetration was observed in fluid-phase membranes. Time-resolved anisotropy measurements demonstrate that eugenol reduces the semiangle of DPH wobbling-in-a-cone in gel-phase membranes, whereas the semiangle remains unaffected in fluid-phase membrane. This implies that the eugenol further orders the gel-phase membrane, and this could be a plausible reason for the eugenol-dependent elevation of the phase-transition temperature of DMPC. We envisage that these results will contribute important information to understand the interaction of eugenol with biological membranes.


Assuntos
Eugenol/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipossomas Unilamelares/química
18.
Faraday Discuss ; 207: 409-421, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359206

RESUMO

The oligomerization of G protein-coupled receptors (GPCRs) represents an important process in GPCR function and drug discovery. We have addressed cholesterol-dependent oligomerization state of the serotonin1A receptor, a representative GPCR and an important drug target, utilizing photobleaching image correlation spectroscopy (pbICS). pbICS allows determination of oligomeric state of membrane receptors since change in cluster density upon photobleaching is dependent on the oligomeric state. Our results show that oligomeric state of the serotonin1A receptor is modulated by cell membrane cholesterol and a trimeric population of the receptor prevails in control (normal) cholesterol conditions. Interestingly, upon lowering membrane cholesterol, the predominant oligomeric population of the receptor changes to dimers. This is associated with an increase in specific ligand binding activity of the receptor, thereby implying a crucial role of receptor dimers in ligand binding activity. Upon cholesterol replenishment, the distribution of receptor oligomers is further changed such that the trimers become the major population, with a concomitant restoration of ligand binding activity to the control level. These results demonstrate the utility of pbICS in monitoring oligomeric states of membrane receptors in general, and the cholesterol-dependent oligomeric state of the serotonin1A receptor in particular. We envision that functional correlates of oligomeric states of GPCRs could provide better understanding of GPCR function in health and disease, and help design better therapeutic strategies.


Assuntos
Fotodegradação , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Colesterol/química , Colesterol/metabolismo , Humanos , Análise Espectral
19.
J Fluoresc ; 28(4): 967-973, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29959578

RESUMO

pH (low) insertion peptide (pHLIP) is a 36-residue peptide derived from the third transmembrane helix of the membrane protein bacteriorhodopsin. The hydrophobicity of this peptide makes it prone to aggregation even at low concentrations, but this has not been studied in detail. In this work, we characterized monomeric and aggregated forms of pHLIP in aqueous solution (pH 8) at low concentrations (~µM) using fluorescence-based approaches, complemented by circular dichroism (CD) spectroscopy. We show here that monomeric and aggregated pHLIP display differential red edge excitation shift (REES) and CD spectra. These spectroscopic features allowed us to show that pHLIP aggregates even at low concentrations. A detailed knowledge of the aggregation behavior of pHLIP under these conditions will be useful for monitoring and quantifying its interaction with membranes.


Assuntos
Fluorescência , Peptídeos/química , Água/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/síntese química , Peptídeos/isolamento & purificação , Agregados Proteicos , Soluções , Espectrometria de Fluorescência
20.
Adv Exp Med Biol ; 1112: 69-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637691

RESUMO

Membrane fusion is essential in several cellular processes in the existence of eukaryotic cells such as cellular trafficking, compartmentalization, intercellular communication, sexual reproduction, cell division, and endo- and exocytosis. Membrane fusion proceeds in model membranes as well as biological membranes through the rearrangement of lipids. The stalk hypothesis provides a picture of the general nature of lipid rearrangement based on mechanical properties and phase behavior of water-lipid mesomorphic systems. In spite of extensive research on exploring the mechanism of membrane fusion, a clear molecular understanding of intermediate and pore formation is lacking. In addition, the mechanism by which proteins and peptides reduce the activation energy for stalk and pore formation is not yet clear though there are several propositions on how they catalyze membrane fusion. In this review, we have discussed about various putative functions of fusion peptides by which they reduce activation barrier and thus promote membrane fusion. A careful analysis of the discussed effects of fusion peptides on membranes might open up new possibilities for better understanding of the membrane fusion mechanism.


Assuntos
Membrana Celular/fisiologia , Fusão de Membrana , Lipídeos de Membrana/fisiologia , Proteínas Virais de Fusão/fisiologia , Peptídeos/fisiologia , Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA