Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chem Res Toxicol ; 33(5): 1179-1194, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31809042

RESUMO

Exposure to nanomaterials (NMs) is inevitable, requiring robust toxicological assessment to understand potential environmental and human health effects. NMs are favored in many applications because of their small size; however, this allows them to easily aerosolize and, subsequently, expose humans via inhalation. Toxicological assessment of NMs by conventional methods in submerged cell culture is not a relevant way to assess inhalation toxicity of NMs because of particle interference with bioassays and changes in particokinetics when dispersed in medium. Therefore, an in vitro aerosol exposure chamber (AEC) was custom designed and used for direct deposition of NMs from aerosols in the environment to the air-liquid interface of lung cells. Human epithelial lung cell line, A549, was used to assess the toxicity of copper, nickel, and zinc oxide nanopowders aerosolized by acoustic agitation in laboratory study. Post optimization, the AEC was used in the field to expose the A549 cells to NM aerosols generated from firing a hand gun and rifle. Toxicity was assessed using nondestructive assays for cell viability and inflammatory response, comparing the biologic effect to the delivered mass dose measured by inductively coupled plasma-mass spectrometry. The nanopowder exposure to submerged and ALI cells resulted in dose-dependent toxicity. In the field, weapon exhaust from the M4 reduced cell viability greater than the M9, while the M9 stimulated inflammatory cytokine release of IL-8. This study highlights the use of a portable chamber with the capability to assess toxicity of NM aerosols exposed to air-liquid interface in vitro lung cell culture.


Assuntos
Aerossóis/toxicidade , Poluição Ambiental/efeitos adversos , Nanoestruturas/toxicidade , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Humanos , Interleucina-8/metabolismo , Níquel/toxicidade , Tamanho da Partícula , Testes de Toxicidade , Células Tumorais Cultivadas , Óxido de Zinco/toxicidade
2.
J Immunother Cancer ; 12(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177076

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is highly transmissible and evades pre-established immunity. Messenger RNA (mRNA) vaccination against ancestral strain spike protein can induce intact T-cell immunity against the Omicron variant, but efficacy of booster vaccination in patients with late-stage lung cancer on immune-modulating agents including anti-programmed cell death protein 1(PD-1)/programmed death-ligand 1 (PD-L1) has not yet been elucidated. METHODS: We assessed T-cell responses using a modified activation-induced marker assay, coupled with high-dimension flow cytometry analyses. Peripheral blood mononuclear cells (PBMCs) were stimulated with various viral peptides and antigen-specific T-cell responses were evaluated using flow cytometry. RESULTS: Booster vaccines induced CD8+ T-cell response against the ancestral SARS-CoV-2 strain and Omicron variant in both non-cancer subjects and patients with lung cancer, but only a marginal induction was detected for CD4+ T cells. Importantly, antigen-specific T cells from patients with lung cancer showed distinct subpopulation dynamics with varying degrees of differentiation compared with non-cancer subjects, with evidence of dysfunction. Notably, female-biased T-cell responses were observed. CONCLUSION: We conclude that patients with lung cancer on immunotherapy show a substantial qualitative deviation from non-cancer subjects in their T-cell response to mRNA vaccines, highlighting the need for heightened protective measures for patients with cancer to minimize the risk of breakthrough infection with the Omicron and other future variants.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Feminino , Vacinas de mRNA , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Leucócitos Mononucleares , COVID-19/prevenção & controle
3.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749632

RESUMO

We assessed vaccine-induced antibody responses to the SARS-CoV-2 ancestral virus and Omicron variant before and after booster immunization in 57 patients with B cell malignancies. Over one-third of vaccinated patients at the pre-booster time point were seronegative, and these patients were predominantly on active cancer therapies such as anti-CD20 monoclonal antibody. While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the overall booster benefit was disproportionately evident in patients already seropositive and not receiving active therapy. While ancestral virus- and Omicron variant-reactive antibody levels among individual patients were largely concordant, neutralizing antibodies against Omicron tended to be reduced. Interestingly, in all patients, including those unable to generate detectable antibodies against SARS-CoV-2 spike, we observed comparable levels of EBV- and influenza-reactive antibodies, demonstrating that B cell-targeting therapies primarily impair de novo but not preexisting antibody levels. These findings support rationale for vaccination before cancer treatment.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Neoplasias/terapia , Anticorpos Monoclonais , Anticorpos Antivirais
4.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36096533

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor ß (TGFß) in the tumor microenvironment (TME). TGFß drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8+ T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGFß1, TGFß2 and TGFß3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. METHODS: We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. RESULTS: We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGFß isoforms. PIIO-1 lacks recognition of GARP-TGFß complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP+ and GARP- cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGFß signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8+ T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. CONCLUSION: GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGFß activation, enhance CD8+ T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas , Humanos , Inibidores de Checkpoint Imunológico , Proteínas de Membrana , Camundongos , Fator de Crescimento Transformador beta/metabolismo
5.
J Hematol Oncol ; 15(1): 5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012610

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; NCT04317040) demonstrated encouraging clinical efficacy. METHODS: Using a systems analytical approach, we studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeostasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. RESULTS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeostasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenuated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with COVID-19 severity and pathogenesis. CONCLUSIONS: Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19.


Assuntos
Antígeno CD24/uso terapêutico , COVID-19/prevenção & controle , Síndrome da Liberação de Citocina/prevenção & controle , Inflamação/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Idoso , Alarminas/imunologia , Alarminas/metabolismo , Antígeno CD24/química , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Método Duplo-Cego , Feminino , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Solubilidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Resultado do Tratamento
6.
medRxiv ; 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34462760

RESUMO

BACKGROUND: SARS-CoV-2 causes COVID-19 through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns (DAMPs) and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) is able to blunt the broad inflammatory response induced by DAMPs in multiple models. A recent randomized phase III trial evaluating the impact of CD24Fc in patients with severe COVID-19 demonstrated encouraging clinical efficacy. METHODS: We studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial (NCT04317040) collected before and after treatment with CD24Fc or placebo. We performed high dimensional spectral flow cytometry analysis of peripheral blood mononuclear cells and measured the levels of a broad array of cytokines and chemokines. A systems analytical approach was used to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. FINDINGS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found systemic hyper-activation of multiple cellular compartments in the placebo group, including CD8+ T cells, CD4+ T cells, and CD56+ NK cells. By contrast, CD24Fc-treated patients demonstrated blunted systemic inflammation, with a return to homeostasis in both NK and T cells within days without compromising the ability of patients to mount an effective anti-Spike protein antibody response. A single dose of CD24Fc significantly attenuated induction of the systemic cytokine response, including expression of IL-10 and IL-15, and diminished the coexpression and network connectivity among extensive circulating inflammatory cytokines, the parameters associated with COVID-19 disease severity. INTERPRETATION: Our data demonstrates that CD24Fc treatment rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19. FUNDING: NIH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA