Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878300

RESUMO

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Assuntos
Encéfalo , Fenótipo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Estudos de Coortes , Feminino , Masculino
2.
Brain Imaging Behav ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478257

RESUMO

Although brain cholinergic denervation has been largely associated with cognitive decline in patients with Parkinson's disease (PD), new evidence suggests that cholinergic upregulation occurs in the hippocampus of PD patients without cognitive deficits. The specific hippocampal sectors and potential mechanisms of this cholinergic compensatory process have been further studied here, using MRI volumetry and morphometry coupled with molecular imaging using the PET radiotracer [18F]-Fluoroethoxybenzovesamicol ([18F]-FEOBV). Following a thorough screening procedure, 18 participants were selected and evenly distributed in three groups, including cognitively normal PD patients (PD-CN), PD patients with mild cognitive impairment (PD-MCI), and healthy volunteers (HV). Participants underwent a detailed neuropsychological assessment, structural MRI, and PET imaging with [18F]-FEOBV. Basal forebrain Ch1-Ch2 volumes were measured using stereotaxic mapping. Hippocampal subfields were automatically defined using the MAGeT-Brain segmentation algorithm. Cholinergic innervation density was quantified using [18F]-FEOBV uptake. Compared with HV, both PD-CN and PD-MCI displayed significantly reduced volumes in CA2-CA3 bilaterally. We found no other hippocampal subfield nor Ch1-Ch2 volume differences between the three groups. PET imaging revealed higher [18F]-FEOBV uptake in CA2-CA3 of the PD-CN compared with HV or PD-MCI. A positive correlation was observed between cognitive performances and [18F]-FEOBV uptake in the right CA2-CA3 subfield. Reduced volume, together with increased [18F]-FEOBV uptake, were observed specifically in the CA2-CA3 hippocampal subfields. However, while the volume change was observed in both PD-CN and PD-MCI, increased [18F]-FEOBV uptake was present only in the PD-CN group. This suggests that a cholinergic compensatory process takes place in the atrophied CA2-CA3 hippocampal subfields and might underlie normal cognition in PD.

3.
Psychiatry Res ; 334: 115791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367455

RESUMO

Maternal smoking during pregnancy (MSDP) is considered a risk factor for ADHD. While the mechanisms underlying this association are not well understood, MSDP may impact the developing brain in ways that lead to ADHD. Here, we investigated the effect of prenatal smoking exposure on cortical brain structures in children with ADHD using two methods of assessing prenatal exposure: maternal recall and epigenetic typing. Exposure groups were defined according to: (1) maternal recall (+MSDP: n = 24; -MSDP: n = 85) and (2) epigenetic markers (EM) (+EM: n = 14 -EM: n = 21). CIVET-1.1.12 and RMINC were used to acquire cortical brain measurements and perform statistical analyses, respectively. The vertex with highest significance was tested for association with Continuous Performance Test (CPT) dimensions. While no differences of brain structures were identified between +MSDP and -MSDP, +EM children (n = 10) had significantly smaller surface area in the right orbitofrontal cortex (ROFc), middle temporal cortex (RTc) and parahippocampal gyrus (RPHg) (15% FDR) compared to -EM children (n = 20). Cortical surface area in the RPHg significantly correlated with CPT commission errors T-scores. This study suggests that molecular markers may better define exposure to environmental risks, as compared to human recall.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Feminino , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Fumar , Fatores de Risco , Fumar Tabaco
4.
Nat Commun ; 15(1): 229, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172111

RESUMO

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neurônios
5.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38826324

RESUMO

Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome- based identification to be successful and explored various features of these data.

6.
Clin Neurophysiol ; 161: 122-132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461596

RESUMO

OBJECTIVE: To explore associations of the main component (P100) of visual evoked potentials (VEP) to pre- and postchiasmatic damage in multiple sclerosis (MS). METHODS: 31 patients (median EDSS: 2.5), 13 with previous optic neuritis (ON), and 31 healthy controls had VEP, optical coherence tomography and magnetic resonance imaging. We tested associations of P100-latency to the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell/inner plexiform layers (GCIPL), lateral geniculate nucleus volume (LGN), white matter lesions of the optic radiations (OR-WML), fractional anisotropy of non-lesional optic radiations (NAOR-FA), and to the mean thickness of primary visual cortex (V1). Effect sizes are given as marginal R2 (mR2). RESULTS: P100-latency, pRNFL, GCIPL and LGN in patients differed from controls. Within patients, P100-latency was significantly associated with GCIPL (mR2 = 0.26), and less strongly with OR-WML (mR2 = 0.17), NAOR-FA (mR2 = 0.13) and pRNFL (mR2 = 0.08). In multivariate analysis, GCIPL and NAOR-FA remained significantly associated with P100-latency (mR2 = 0.41). In ON-patients, P100-latency was significantly associated with LGN volume (mR2 = -0.56). CONCLUSIONS: P100-latency is affected by anterior and posterior visual pathway damage. In ON-patients, damage at the synapse-level (LGN) may additionally contribute to latency delay. SIGNIFICANCE: Our findings corroborate post-chiasmatic contributions to the VEP-signal, which may relate to distinct pathophysiological mechanisms in MS.


Assuntos
Potenciais Evocados Visuais , Corpos Geniculados , Esclerose Múltipla , Vias Visuais , Humanos , Masculino , Feminino , Corpos Geniculados/fisiopatologia , Corpos Geniculados/diagnóstico por imagem , Adulto , Potenciais Evocados Visuais/fisiologia , Vias Visuais/fisiopatologia , Vias Visuais/diagnóstico por imagem , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Imageamento por Ressonância Magnética , Neurite Óptica/fisiopatologia , Neurite Óptica/diagnóstico por imagem
7.
Nat Med ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147830

RESUMO

Brain aging process is influenced by various lifestyle, environmental and genetic factors, as well as by age-related and often coexisting pathologies. Magnetic resonance imaging and artificial intelligence methods have been instrumental in understanding neuroanatomical changes that occur during aging. Large, diverse population studies enable identifying comprehensive and representative brain change patterns resulting from distinct but overlapping pathological and biological factors, revealing intersections and heterogeneity in affected brain regions and clinical phenotypes. Herein, we leverage a state-of-the-art deep-representation learning method, Surreal-GAN, and present methodological advances and extensive experimental results elucidating brain aging heterogeneity in a cohort of 49,482 individuals from 11 studies. Five dominant patterns of brain atrophy were identified and quantified for each individual by respective measures, R-indices. Their associations with biomedical, lifestyle and genetic factors provide insights into the etiology of observed variances, suggesting their potential as brain endophenotypes for genetic and lifestyle risks. Furthermore, baseline R-indices predict disease progression and mortality, capturing early changes as supplementary prognostic markers. These R-indices establish a dimensional approach to measuring aging trajectories and related brain changes. They hold promise for precise diagnostics, especially at preclinical stages, facilitating personalized patient management and targeted clinical trial recruitment based on specific brain endophenotypic expression and prognosis.

8.
medRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234857

RESUMO

Brain aging is a complex process influenced by various lifestyle, environmental, and genetic factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI methods have been instrumental in understanding the neuroanatomical changes that occur during aging in large and diverse populations. However, the multiplicity and mutual overlap of both pathologic processes and affected brain regions make it difficult to precisely characterize the underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a state-of-the art deep representation learning method, Surreal-GAN, and present both methodological advances and extensive experimental results that allow us to elucidate the heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. Five dominant patterns of neurodegeneration were identified and quantified for each individual by their respective (herein referred to as) R-indices. Significant associations between R-indices and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of observed variances. Furthermore, baseline R-indices showed predictive value for disease progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, prognostication, and may inform stratification into clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA