RESUMO
Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.
Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-HíbridoRESUMO
Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.
Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Phytophthora infestans/genética , Fenótipo , Doenças das Plantas/genéticaRESUMO
Plant pathogens deliver effectors into plant cells to suppress immunity. Whereas many effectors inactivate positive immune regulators, other effectors associate with negative regulators of immunity: so-called susceptibility (S) factors. Little is known about how pathogens exploit S factors to suppress immunity. Phytophthora infestans RXLR effector Pi02860 interacts with host protein NRL1, which is an S factor whose activity suppresses INF1-triggered cell death (ICD) and is required for late blight disease. We show that NRL1 interacts in yeast and in planta with a guanine nucleotide exchange factor called SWAP70. SWAP70 associates with endosomes and is a positive regulator of immunity. Virus-induced gene silencing of SWAP70 in Nicotiana benthamiana enhances P. infestans colonization and compromises ICD. In contrast, transient overexpression of SWAP70 reduces P. infestans infection and accelerates ICD. Expression of Pi02860 and NRL1, singly or in combination, results in proteasome-mediated degradation of SWAP70. Degradation of SWAP70 is prevented by silencing NRL1, or by mutation of Pi02860 to abolish its interaction with NRL1. NRL1 is a BTB-domain protein predicted to form the substrate adaptor component of a CULLIN3 ubiquitin E3 ligase. A dimerization-deficient mutant, NRL1NQ, fails to interact with SWAP70 but maintains its interaction with Pi02860. NRL1NQ acts as a dominant-negative mutant, preventing SWAP70 degradation in the presence of effector Pi02860, and reducing P. infestans infection. Critically, Pi02860 enhances the association between NRL1 and SWAP70 to promote proteasome-mediated degradation of the latter and, thus, suppress immunity. Preventing degradation of SWAP70 represents a strategy to combat late blight disease.
Assuntos
Proteínas de Ligação a DNA/imunologia , Nicotiana/imunologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Proteínas Culina/genética , Proteínas Culina/imunologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/imunologia , Phytophthora infestans/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteólise , Nicotiana/genética , Nicotiana/microbiologiaRESUMO
Following the molecular characterisation of functional disease resistance genes in recent years, methods to track and verify the integrity of multiple genes in varieties are needed for crop improvement through resistance stacking. Diagnostic resistance gene enrichment sequencing (dRenSeq) enables the high-confidence identification and complete sequence validation of known functional resistance genes in crops. As demonstrated for tetraploid potato varieties, the methodology is more robust and cost-effective in monitoring resistances than whole-genome sequencing and can be used to appraise (trans) gene integrity efficiently. All currently known NB-LRRs effective against viruses, nematodes and the late blight pathogen Phytophthora infestans can be tracked with dRenSeq in potato and hitherto unknown polymorphisms have been identified. The methodology provides a means to improve the speed and efficiency of future disease resistance breeding in crops by directing parental and progeny selection towards effective combinations of resistance genes.
Assuntos
Resistência à Doença/genética , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Polimorfismo Genético , Solanum tuberosum/genética , Produtos Agrícolas , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Solanum tuberosum/imunologia , TetraploidiaRESUMO
KEY MESSAGE: We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Poaceae/genética , Basidiomycota , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Modelos Lineares , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Locos de Características QuantitativasRESUMO
KEY MESSAGE: We show the usefulness of integrating effector screening in a breeding program and in resistance gene cloning, with Phytophthora resistance in the Swedish potato breeding clone SW93-1015 as an example. Phytophthora infestans is one of the most devastating plant pathogens worldwide. We have earlier found that the SW93-1015 potato breeding clone has an efficient resistance against P. infestans under field conditions in Sweden, which has an unusually high local diversity of the pathogen. This potato clone has characteristics that are different from classical R-gene-mediated resistance such as elevated levels of hydrogen peroxide (H2O2) under controlled conditions. Analysis of 76 F1 potato progenies from two individual crosses resulted in nearly 50% resistant clones, from both crosses. This result suggests that the SW93-1015 clone has a simplex genotype for this trait. Screening with over 50 different P. infestans effectors, containing the conserved motif RXLR (for Arg, any amino acid, Leu, Arg), revealed a specific response to Avr2, which suggests that SW93-1015 might contain a functional homolog of the R2 resistance gene. We cloned eight R2 gene homologs from SW93-1015, whereof seven have not been described before and one gene encoded a protein identical to Rpi-ABPT. Expression of this gene in potato cultivar Désirée provided R2-specific resistance, whereas other homologues did not. Using RNAseq analyses we designed a new DNA marker for the R2 resistance in SW93-1015. In summary, we have demonstrated the use of effector screening in practical breeding material and revealed the key resistance mechanism for SW93-1015.
Assuntos
Resistência à Doença/genética , Genes de Plantas , Phytophthora infestans , Doenças das Plantas/genética , Solanum tuberosum/genética , Sequência de Aminoácidos , Cruzamento , Clonagem Molecular , Marcadores Genéticos , Genótipo , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/microbiologiaRESUMO
Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.
Assuntos
Resistência à Doença , Monoéster Fosfórico Hidrolases/metabolismo , Phytophthora infestans/patogenicidade , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Solanum/microbiologia , Sequência de Aminoácidos , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Imunoprecipitação , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/imunologia , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plasmídeos/genética , Plasmídeos/metabolismo , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas/genética , Proteínas/imunologia , Proteínas/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Solanum/enzimologia , Solanum/imunologia , Especificidade por Substrato , Técnicas do Sistema de Duplo-HíbridoRESUMO
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.
Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genéticaRESUMO
BACKGROUND: The cultivated potato (Solanum tuberosum L.) is an important food crop, but highly susceptible to many pathogens. The major threat to potato production is the Irish famine pathogen Phytophthora infestans, which causes the devastating late blight disease. Potato breeding makes use of germplasm from wild relatives (wild germplasm) to introduce resistances into cultivated potato. The Solanum section Petota comprises tuber-bearing species that are potential donors of new disease resistance genes. The aim of this study was to explore Solanum section Petota for resistance genes and generate a widely accessible resource that is useful for studying and implementing disease resistance in potato. DESCRIPTION: The SolRgene database contains data on resistance to P. infestans and presence of R genes and R gene homologues in Solanum section Petota. We have explored Solanum section Petota for resistance to late blight in high throughput disease tests under various laboratory conditions and in field trials. From resistant wild germplasm, segregating populations were generated and assessed for the presence of resistance genes. All these data have been entered into the SolRgene database. To facilitate genetic and resistance gene evolution studies, phylogenetic data of the entire SolRgene collection are included, as well as a tool for generating phylogenetic trees of selected groups of germplasm. Data from resistance gene allele-mining studies are incorporated, which enables detection of R gene homologs in related germplasm. Using these resources, various resistance genes have been detected and some of these have been cloned, whereas others are in the cloning pipeline. All this information is stored in the online SolRgene database, which allows users to query resistance data, sequences, passport data of the accessions, and phylogenic classifications. CONCLUSION: Solanum section Petota forms the basis of the SolRgene database, which contains a collection of resistance data of an unprecedented size and precision. Complemented with R gene sequence data and phylogenetic tools, SolRgene can be considered the primary resource for information on R genes from potato and wild tuber-bearing relatives.
Assuntos
Bases de Dados Genéticas , Resistência à Doença/genética , Genes de Plantas , Solanum/genética , Sequência de Bases , Evolução Biológica , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Resistência à Doença/imunologia , Dados de Sequência Molecular , Filogenia , Phytophthora infestans/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Solanum/imunologia , Solanum tuberosum/genética , Solanum tuberosum/imunologiaRESUMO
A strategy to control the devastating late blight disease is providing potato cultivars with genes that are effective in resistance to a broad spectrum of Phytophthora infestans isolates. Thus far, most late blight resistance (R) genes that were introgressed in potato were quickly defeated. In contrast, the Rpi-blb1 gene originating from Solanum bulbocastanum has performed as an exclusive broad-spectrum R gene for many years. Recently, the RXLR effector family ipiO was identified to contain Avr-blb1. Monitoring the genetic diversity of the ipiO family in a large set of isolates of P. infestans and related species resulted in 16 ipiO variants in three distinct classes. Class I and class II but not class III ipiO variants induce cell death when coinfiltrated with Rpi-blb1 in Nicotiana benthamiana. Class I is highly diverse and is represented in all analyzed P. infestans isolates except two Mexican P. infestans isolates, and these were found virulent on Rpi-blb1 plants. In its C-terminal domain, IPI-O contains a W motif that is essential for triggering Rpi-blb1-mediated cell death and is under positive selection. This study shows that profiling the variation of Avr-blb1 within a P. infestans population is instrumental for predicting the effectiveness of Rpi-blb1-mediated resistance in potato.
Assuntos
Proteínas Fúngicas/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Dados de Sequência Molecular , Filogenia , Phytophthora infestans/patogenicidade , VirulênciaRESUMO
Engineering resistance genes to gain effector recognition is emerging as an important step in attaining broad, durable resistance. We engineered potato resistance gene R3a to gain recognition of the virulent AVR3aEM effector form of Phytophthora infestans. Random mutagenesis, gene shuffling and site-directed mutagenesis of R3a were conducted to produce R3a* variants with gain of recognition towards AVR3aEM. Programmed cell death following gain of recognition was enhanced in iterative rounds of artificial evolution and neared levels observed for recognition of AVR3aKI by R3a. We demonstrated that R3a*-mediated recognition responses, like for R3a, are dependent on SGT1 and HSP90. In addition, this gain of response is associated with re-localisation of R3a* variants from the cytoplasm to late endosomes when co-expressed with either AVR3aKI or AVR3aEM a mechanism that was previously only seen for R3a upon co-infiltration with AVR3aKI. Similarly, AVR3aEM specifically re-localised to the same vesicles upon recognition by R3a* variants, but not with R3a. R3a and R3a* provide resistance to P. infestans isolates expressing AVR3aKI but not those homozygous for AVR3aEM.
Assuntos
Evolução Molecular Direcionada , Resistência à Doença/genética , Genes de Plantas , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidade , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Agrobacterium/fisiologia , Apoptose , Embaralhamento de DNA , Endossomos/metabolismo , Homozigoto , Mutagênese Sítio-Dirigida , Mutação/genética , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/metabolismo , Virulência , Fatores de VirulênciaRESUMO
Aegilops sharonensis Eig (Sharon goatgrass) is a wild diploid relative of wheat within the Sitopsis section of Aegilops. This species represents an untapped reservoir of genetic diversity for traits of agronomic importance, especially as a source of novel disease resistance. To gain a foothold in this genetic resource, we sequenced the cDNA from leaf tissue of two geographically distinct Ae. sharonensis accessions (1644 and 2232) using the 454 Life Sciences platform. We compared the results of two different assembly programs using different parameter sets to generate 13 distinct assemblies in an attempt to maximize representation of the gene space in de novo transcriptome assembly. The most sensitive assembly (71,029 contigs; N50 674 nts) retrieved 18,684 unique best reciprocal BLAST hits (BRBH) against six previously characterised grass proteomes while the most specific assembly (30,609 contigs; N50 815 nts) retrieved 15,687 BRBH. We combined these two assemblies into a set of 62,243 non-redundant sequences and identified 139 belonging to plant disease resistance genes of the nucleotide binding leucine-rich repeat class. Based on the non-redundant sequences, we predicted 37,743 single nucleotide polymorphisms (SNP), equivalent to one per 1,142 bp. We estimated the level of heterozygosity as 1.6% in accession 1644 and 30.1% in 2232. The Ae. sharonensis leaf transcriptome provides a rich source of sequence and SNPs for this wild wheat relative. These sequences can be used with existing monocot genome sequences and EST sequence collections (e.g. barley, Brachypodium, wheat, rice, maize and Sorghum) to assist with genetic and physical mapping and candidate gene identification in Ae. sharonensis. These resources provide an initial framework to further build on and characterise the genetic and genomic structure of Ae. sharonensis.
Assuntos
Genoma de Planta , Poaceae/genética , Transcriptoma , Triticum/genética , Heterozigoto , Doenças das Plantas/genética , Folhas de Planta/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Potato (Solanum tuberosum) is the world's third-largest food crop. It severely suffers from late blight, a devastating disease caused by Phytophthora infestans. This oomycete pathogen secretes host-translocated RXLR effectors that include avirulence (AVR) proteins, which are targeted by resistance (R) proteins from wild Solanum species. Most Solanum R genes appear to have coevolved with P. infestans at its center of origin in central Mexico. Various R and Avr genes were recently cloned, and here we catalog characterized R-AVR pairs. We describe the mechanisms that P. infestans employs for evading R protein recognition and discuss partial resistance and partial virulence phenotypes in the context of our knowledge of effector diversity and activity. Genome-wide catalogs of P. infestans effectors are available, enabling effectoromics approaches that accelerate R gene cloning and specificity profiling. Engineering R genes with expanded pathogen recognition has also become possible. Importantly, monitoring effector allelic diversity in pathogen populations can assist in R gene deployment in agriculture.
Assuntos
Genes Fúngicos/genética , Genes de Plantas/genética , Phytophthora/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Solanum tuberosum/genética , Alelos , Evolução Biológica , Clonagem Molecular , Resistência à Doença/genética , Variação Genética , Genômica , Fenótipo , Phytophthora/patogenicidade , Virulência/genéticaRESUMO
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.