Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 51(1): 30-39, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933553

RESUMO

Spinocerebellar ataxia 3 (SCA3) is an incurable, neurodegenerative genetic disorder that leads to progressive cerebellar ataxia and other parkinsonian-like pathologies because of loss of cerebellar neurons. The role of an expanded polyglutamine aggregate on neural progenitor cells is unknown. Here, we show that SCA3 patient-specific induced neural progenitor cells (iNPCs) exhibit proliferative defects. Moreover, SCA3 iNPCs have reduced autophagic expression compared to control. Furthermore, although SCA3 iNPCs continue to proliferate, they do not survive subsequent passages compared to control iNPCs, indicating the likelihood that SCA3 iNPCs undergo rapid senescence. Exposure to interleukin-4 (IL-4), a type 2 cytokine produced by immune cells, resulted in an observed increase in expression of autophagic programs and a reduction in the proliferation defect observed in SCA3 iNPCs. Our results indicate a previously unobserved role of SCA3 disease ontology on the neural stem cell pool and a potential therapeutic strategy using IL-4 to ameliorate or delay disease pathology in the SCA3 neural progenitor cell population.


Assuntos
Doença de Machado-Joseph , Células-Tronco Neurais , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Interleucina-4 , Citocinas/metabolismo , Fator de Transcrição STAT6/metabolismo
2.
Nucleic Acids Res ; 50(13): 7655-7668, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776134

RESUMO

Polyglutamine (polyQ) diseases are a type of inherited neurodegenerative disorders caused by cytosine-adenine-guanine (CAG) trinucleotide expansion within the coding region of the disease-associated genes. We previously demonstrated that a pathogenic interaction between expanded CAG RNA and the nucleolin (NCL) protein triggers the nucleolar stress and neuronal cell death in polyQ diseases. However, mechanisms behind the molecular interaction remain unknown. Here, we report a 1.45 Å crystal structure of the r(CAG)5 oligo that comprises a full A'-form helical turn with widened grooves. Based on this structure, we simulated a model of r(CAG)5 RNA complexed with the RNA recognition motif 2 (RRM2) of NCL and identified NCL residues that are critical for its binding to CAG RNA. Combined with in vitro and in vivo site-directed mutagenesis studies, our model reveals that CAG RNA binds to NCL sites that are not important for other cellular functions like gene expression and rRNA synthesis regulation, indicating that toxic CAG RNA interferes with NCL functions by sequestering it. Accordingly, an NCL mutant that is aberrant in CAG RNA-binding could rescue RNA-induced cytotoxicity effectively. Taken together, our study provides new molecular insights into the pathogenic mechanism of polyQ diseases mediated by NCL-CAG RNA interaction.


Assuntos
Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , RNA , Repetições de Trinucleotídeos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Oligonucleotídeos/metabolismo , Peptídeos , RNA/genética , Nucleolina
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947817

RESUMO

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Assuntos
Apoptose/genética , Dano ao DNA , Doença de Huntington/genética , Peptídeos/genética , Pirofosfatases/genética , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Apoptose/efeitos dos fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Pirofosfatases/metabolismo , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584043

RESUMO

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Assuntos
Portadores de Fármacos/química , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/antagonistas & inibidores , Ataxias Espinocerebelares/tratamento farmacológico , Administração Intranasal , Administração Oral , Animais , Animais Geneticamente Modificados , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Loci Gênicos/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Intraventriculares , Injeções Espinhais , Fármacos Neuroprotetores/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Peptídeos/genética , Peptídeos/metabolismo , Permeabilidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Distribuição Tecidual , Expansão das Repetições de Trinucleotídeos
5.
BMC Neurol ; 21(1): 78, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602173

RESUMO

BACKGROUND: CCDC88C is a ubiquitously expressed protein with multiple functions, including roles in cell polarity and the development of dendrites in the nervous system. Bi-allelic mutations in the CCDC88C gene cause autosomal recessive congenital hydrocephalus (OMIM #236600). Studies recently linked heterozygous mutations in CCDC88C to the development of the late-onset spinocerebellar ataxia type 40 (OMIM #616053). CASE PRESENTATION: A 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. Exome sequencing, in-silico analysis, and Sanger sequencing identified the heterozygous NM_001080414.4:c.1993G > A (p.E665K) variant in CCDC88C as a potential cause of her illness. To explore the pathogenicity of the NM_001080414.4:c.1993G > A (p.E665K) variant, we expressed it in human embryonic kidney 293 cells and assessed its effects on apoptosis. In our experiment, NM_001080414.4:c.1993G > A (p.E665K) induced JNK hyper-phosphorylation and enhanced apoptosis. In contrast to previous reports, our patient developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. CONCLUSION: We, herein, heighlighted the possibility of extending the phenotype associated with variants in CCDC88C to include early-onset pure hereditary spastic paraplegia.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos/genética , Paraplegia Espástica Hereditária/genética , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , Mutação
6.
J Biol Chem ; 294(8): 2757-2770, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593503

RESUMO

Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.


Assuntos
Autofagia , Modelos Animais de Doenças , Furanos/farmacologia , Corpos de Inclusão/patologia , Doenças Neurodegenerativas/prevenção & controle , Neurônios/patologia , Peptídeos/metabolismo , Animais , Citoproteção , Drosophila melanogaster/fisiologia , Furanos/química , Humanos , Corpos de Inclusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/química , Ratos
7.
RNA ; 24(4): 486-498, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29295891

RESUMO

Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.


Assuntos
Doença de Huntington/terapia , Peptídeos/farmacologia , Deficiências na Proteostase/genética , Ataxias Espinocerebelares/terapia , Repetições de Trinucleotídeos/genética , Animais , Morte Celular/efeitos dos fármacos , Drosophila/genética , Células HEK293 , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Peptídeos/metabolismo , Fosfoproteínas/genética , Dobramento de Proteína , Deficiências na Proteostase/patologia , Deficiências na Proteostase/terapia , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Transcrição Gênica/genética , Repetições de Trinucleotídeos/efeitos dos fármacos , Nucleolina
8.
FASEB J ; 33(11): 12019-12035, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373844

RESUMO

Amyloid-ß (Aß) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aß to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aß generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aß levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aß production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aß. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aß production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aß generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the ß1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aß production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-ß generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Treonina/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Fosforilação , Ligação Proteica
9.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026307

RESUMO

Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.


Assuntos
Apoptose , Polaridade Celular/genética , Polaridade Celular/fisiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Adulto , Idoso , Peptídeos beta-Amiloides/metabolismo , Animais , Caspase 3/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Proteínas Desgrenhadas/metabolismo , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/induzido quimicamente , Peptídeos/farmacologia , Ratos , Fator de Transcrição YY1/genética , alfa-Sinucleína/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
10.
J Neurosci ; 38(37): 8071-8086, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209205

RESUMO

The octomeric exocyst complex governs the final step of exocytosis in both plants and animals. Its roles, however, extend beyond exocytosis and include organelle biogenesis, ciliogenesis, cell migration, and cell growth. Exo70 is a conserved component of the exocyst whose function in Drosophila is unclear. In this study, we characterized two mutant alleles of Drosophila exo70. exo70 mutants exhibit reduced synaptic growth, locomotor activity, glutamate receptor density, and mEPSP amplitude. We found that presynaptic Exo70 is necessary for normal synaptic growth at the neuromuscular junction (NMJ). At the neuromuscular junction, exo70 genetically interacts with the small GTPase ralA to regulate synaptic growth. Loss of Exo70 leads to the blockage of JNK signaling-, activity-, and temperature-induced synaptic outgrowths. We showed that this phenotype is associated with an impairment of integral membrane protein transport to the cell surface at synaptic terminals. In octopaminergic motor neurons, Exo70 is detected in synaptic varicosities, as well as the regions of membrane extensions in response to activity stimulation. Strikingly, mild thermal stress causes severe neurite outgrowth defects and pharate adult lethality in exo70 mutants. exo70 mutants also display defective locomotor activity in response to starvation stress. These results demonstrated that Exo70 is an important regulator of induced synaptic growth and is crucial for an organism's adaptation to environmental changes.SIGNIFICANCE STATEMENT The exocyst complex is a conserved protein complex directing secretory vesicles to the site of membrane fusion during exocytosis, which is essential for transporting proteins and membranes to the cell surface. Exo70 is a subunit of the exocyst complex whose roles in neurons remain elusive, and its function in Drosophila is unclear. In Drosophila, Exo70 is expressed in both glutamatergic and octopaminergic neurons, and presynaptic Exo70 regulates synaptic outgrowth. Moreover, exo70 mutants have impaired integral membrane transport to the cell surface at synaptic terminals and block several kinds of induced synaptic growth. Remarkably, elevated temperature causes severe arborization defects and lethality in exo70 mutants, thus underpinning the importance of Exo70 functions in development and adaptation to the environment.


Assuntos
Sobrevivência Celular/genética , Proteínas de Drosophila/metabolismo , Exocitose/fisiologia , Temperatura Alta , Crescimento Neuronal/genética , Estresse Fisiológico/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Neuritos/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética
11.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29615491

RESUMO

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Crescimento Neuronal/fisiologia , Neurônios/citologia , Proteínas Nucleares/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular , Células Cultivadas , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Ratos , Proteínas rac1 de Ligação ao GTP/genética
12.
J Neurochem ; 149(6): 781-798, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30685895

RESUMO

Polyglutamine (polyQ) diseases describe a group of progressive neurodegenerative disorders caused by the CAG triplet repeat expansion in the coding region of the disease genes. To date, nine such diseases, including spinocerebellar ataxia type 3 (SCA3), have been reported. The formation of SDS-insoluble protein aggregates in neurons causes cellular dysfunctions, such as impairment of the ubiquitin-proteasome system, and contributes to polyQ pathologies. Recently, the E3 ubiquitin ligases, which govern substrate specificity of the ubiquitin-proteasome system, have been implicated in polyQ pathogenesis. The Cullin (Cul) proteins are major components of Cullin-RING ubiquitin ligases (CRLs) complexes that are evolutionarily conserved in the Drosophila genome. In this study, we examined the effect of individual Culs on SCA3 pathogenesis and found that the knockdown of Cul1 expression enhances SCA3-induced neurodegeneration and reduces the solubility of expanded SCA3-polyQ proteins. The F-box proteins are substrate receptors of Cul1-based CRL. We further performed a genetic modifier screen of the 19 Drosophila F-box genes and identified F-box involved in polyQ pathogenesis (FipoQ) as a genetic modifier of SCA3 degeneration that modulates the ubiquitination and solubility of expanded SCA3-polyQ proteins. In the human SK-N-MC cell model, we identified that F-box only protein 33 (FBXO33) exerts similar functions as FipoQ in modulating the ubiquitination and solubility of expanded SCA3-polyQ proteins. Taken together, our study demonstrates that Cul1-based CRL and its associated F-box protein, FipoQ/FBXO33, modify SCA3 protein toxicity. These findings will lead to a better understanding of the disease mechanism of SCA3 and provide insights for developing treatments against SCA3. Cover Image for this issue: doi: 10.1111/jnc.14510.


Assuntos
Ataxina-3/metabolismo , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Linhagem Celular Tumoral , Drosophila , Proteínas de Drosophila/metabolismo , Humanos , Doença de Machado-Joseph/metabolismo , Peptídeos/metabolismo , Peptídeos/toxicidade , Solubilidade , Ubiquitinação
13.
J Biol Chem ; 292(14): 5784-5800, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28246169

RESUMO

Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S-transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases.


Assuntos
Sinais de Exportação Nuclear , Fator 1 de Elongação de Peptídeos/metabolismo , Peptídeos/metabolismo , Expansão das Repetições de Trinucleotídeos , Células HEK293 , Humanos , Hipoventilação/congênito , Hipoventilação/genética , Hipoventilação/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Transporte Proteico/genética , Apneia do Sono Tipo Central/genética , Apneia do Sono Tipo Central/metabolismo
14.
Mol Pharm ; 15(12): 5781-5792, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30392378

RESUMO

Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 µmol/kg) and L1P3V8 (6 µmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.


Assuntos
Proteínas de Transporte/administração & dosagem , Transtornos Heredodegenerativos do Sistema Nervoso/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/metabolismo , RNA Mensageiro/antagonistas & inibidores , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/farmacocinética , Peptídeos/farmacocinética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Expansão das Repetições de Trinucleotídeos/genética
15.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237851

RESUMO

Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metiltransferases/genética , Transdução de Sinais/genética , Animais , Artrópodes/genética , Artrópodes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metiltransferases/metabolismo , MicroRNAs
16.
Small ; 12(37): 5178-5189, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27442290

RESUMO

Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles.


Assuntos
Endocitose , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ouro/química , Nanotubos/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Endocitose/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Camundongos , Modelos Biológicos , Nanotubos/toxicidade , Nanotubos/ultraestrutura , Polietilenoglicóis/química
17.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188042

RESUMO

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
18.
Biochim Biophys Acta ; 1842(6): 779-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24269666

RESUMO

The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Assuntos
Nucléolo Celular/genética , Doença de Huntington/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Fibroblastos/metabolismo , Humanos , Doença de Huntington/patologia , Biossíntese de Proteínas/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ataxias Espinocerebelares/patologia , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
FASEB J ; 28(1): 337-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24056087

RESUMO

FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Proteínas Nucleares/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Células CHO , Células Cultivadas , Cricetulus , Imunoprecipitação , Ligação Proteica , Ratos , Técnicas do Sistema de Duplo-Híbrido
20.
Biochem J ; 464(3): 439-47, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25271362

RESUMO

A number of viral gene products are capable of inducing apoptosis by interfering with various cellular signalling cascades. We previously reported the pro-apoptotic property of the SARS-CoV (severe acute respiratory syndrome coronavirus) M (membrane)-protein and a down-regulation of the phosphorylation level of the cell-survival protein PKB (protein kinase B)/Akt in cells expressing M-protein. We also showed that overexpression of PDK1 (3-phosphoinositide-dependent protein kinase 1), the immediate upstream kinase of PKB/Akt, suppressed M-induced apoptosis. This illustrates that M-protein perturbs the PDK1 and PKB/Akt cell survival signalling pathway. In the present study, we demonstrated that the C-terminus of M-protein interacts with the PH (pleckstrin homology) domain of PDK1. This interaction disrupted the association between PDK1 and PKB/Akt, and led to down-regulation of PKB/Akt activity. This subsequently reduced the level of the phosphorylated forkhead transcription factor FKHRL1 and ASK (apoptosis signal-regulating kinase), and led to the activation of caspases 8 and 9. Altogether, our data demonstrate that the SARS-CoV M-protein induces apoptosis through disrupting the interaction of PDK1 with PKB/Akt, and this causes the activation of apoptosis. Our work highlights that the SARS-CoV M protein is highly pro-apoptotic and is capable of simultaneously inducing apoptosis via initiating caspases 8 and 9. Preventing the interaction between M-protein and PDK1 is a plausible therapeutic approach to target the pro-apoptotic property of SARS-CoV.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Matriz Viral/metabolismo , Caspases/metabolismo , Proteínas M de Coronavírus , Células HEK293 , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Piruvato Desidrogenase Quinase de Transferência de Acetil , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas da Matriz Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA