RESUMO
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus, which causes epidemics of fever, joint pain and rash. There are three genotypes: West African, East/Central/South/Africa (ECSA) and Asian, with the latter two predominant globally. Genotype-specific differences in clinical presentations, virulence and immunopathology have been described. Macrophages are key cells in immune responses against CHIKV. Circulating blood monocytes enter tissue to differentiate into monocyte-derived macrophages (MDMs) in response to CHIKV infection at key replication sites such as lymphoid organs and joints. This study analyses differences in replication and induced immune mediators following infection of MDMs with Asian and ECSA CHIKV genotypes. Primary human MDMs were derived from residual blood donations. Replication of Asian (MY/06/37348) or ECSA (MY/08/065) genotype strains of CHIKV in MDMs was measured by plaque assay. Nineteen immune mediators were measured in infected cell supernatants using multiplexed immunoassay or ELISA. MY/08/065 showed significantly higher viral replication at 24 h post-infection (h p.i.) but induced significantly lower expression of proinflammatory cytokines (CCL-2, CCL-3, CCL-4, RANTES and CXCL-10) and the anti-inflammatory IL-1Ra compared to MY/06/37348. No differences were seen at later time points up to 72 h p.i. During early infection, MY/08/065 induced lower proinflammatory immune responses in MDMs. In vivo, this may lead to poorer initial control of viral infection, facilitating CHIKV replication and dissemination to other sites such as joints. This may explain the consistent past findings that the ECSA genotype is associated with greater viremia and severity of symptoms than the Asian genotype. Knowledge of CHIKV genotype-specific immunopathogenic mechanisms in human MDMs is important in understanding of clinical epidemiology, biomarkers and therapeutics in areas with co-circulation of different genotypes.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Vírus Chikungunya/genética , Imunidade Inata , Macrófagos , Replicação Viral , GenótipoRESUMO
While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.
Assuntos
Ácido Clorogênico/análogos & derivados , Enterovirus Humano A , Infecções por Enterovirus , Ilex , Plantas Medicinais , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Ácido Clorogênico/uso terapêutico , Enterovirus Humano A/genética , Infecções por Enterovirus/tratamento farmacológico , Heparitina Sulfato/metabolismo , Humanos , Ilex/química , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , Plantas Medicinais/químicaRESUMO
Enterovirus D68 (EV-D68) is an emerging respiratory pathogen since the 2014 outbreak in the United States. A low level of virus circulation has been reported in Kuala Lumpur, Malaysia, in the past. However, the extent of the infection in Malaysia is not known. In the present study, we determine the seroepidemiology of EV-D68 in Kuala Lumpur, Malaysia, before and after the United States outbreak in August 2014. A luciferase-based seroneutralization test was developed using a clone-derived prototype Fermon strain carrying a nanoluciferase marker. We screened the neutralization capacity of 450 serum samples from children and adults (1-89 years old) collected between 2013 and 2015. EV-D68 seropositivity increased with age, with children aged 1-3 showing significantly lower seroprevalence compared to adults. Multivariate analysis showed that older age groups 13-49 years (odds ratio [OR] = 4.78; 95% confidence interval [CI] = 2.69-8.49; p < 0.0001) and ≥50 years (OR = 3.83; 95% CI = 2.19-6.68; p < 0.0001) were more likely to be EV-D68 seropositive than children <13 years. Sampling post-September 2014 compared to pre-Sept 2014 also predicted seropositivity (OR = 1.66; 95% CI = 1.04-2.65). The presence of neutralizing antibodies against EV-D68 in the study population suggests that EV-D68 was circulating before 2014. A higher seropositivity post-September 2014 suggests that Malaysia also experienced an upsurge in EV-D68 infections after the United States outbreaks in August 2014. A low seropositivity rate observed in children, especially those aged 1-3 years old, suggests that they are at risk and should be prioritized for future vaccination.
Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes , Criança , Pré-Escolar , Surtos de Doenças , Humanos , Lactente , Malásia/epidemiologia , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Estados Unidos , Adulto JovemRESUMO
Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais/genética , COVID-19/epidemiologia , Humanos , Malásia/epidemiologia , Filogenia , SARS-CoV-2/genética , Estudos SoroepidemiológicosRESUMO
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
Assuntos
Encéfalo/virologia , Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/genética , Infecções por Enterovirus/virologia , Enterovirus/genética , Heparina/metabolismo , Fatores de Virulência/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Enterovirus/química , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/metabolismo , Heparina/química , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos ICR , Mutação , Fenótipo , Eletricidade Estática , Células Tumorais Cultivadas , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética , Replicação ViralRESUMO
BACKGROUND: Available data on influenza burden across Southeast Asia are largely limited to pediatric populations, with inconsistent findings. METHODS: We conducted a multicenter, hospital-based active surveillance study of adults in Malaysia with community-acquired pneumonia (CAP), acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and acute exacerbation of asthma (AEBA), who had influenza-like illness ≤10 days before hospitalization. We estimated the rate of laboratory-confirmed influenza and associated complications over 13 months (July 2018-August 2019) and described the distribution of causative influenza strains. We evaluated predictors of laboratory-confirmed influenza and severe clinical outcomes using multivariate analysis. RESULTS: Of 1106 included patients, 114 (10.3%) were influenza-positive; most were influenza A (85.1%), with A/H1N1pdm09 being the predominant circulating strain during the study following a shift from A/H3N2 from January-February 2019 onwards. In multivariate analyses, an absence of comorbidities (none versus any comorbidity [OR (95%CI), 0.565 (0.329-0.970)], p = 0.038) and of dyspnea (0.544 (0.341-0.868)], p = 0.011) were associated with increased risk of influenza positivity. Overall, 184/1106 (16.6%) patients were admitted to intensive care or high-dependency units (ICU/HDU) (13.2% were influenza positive) and 26/1106 (2.4%) died (2.6% were influenza positive). Males were more likely to have a severe outcome (ICU/HDU admission or death). CONCLUSIONS: Influenza was a significant contributor to hospitalizations associated with CAP, AECOPD and AEBA. However, it was not associated with ICU/HDU admission in this population. Study registration, NMRR ID: NMRR-17-889-35,174.
Assuntos
Asma/complicações , Infecções Comunitárias Adquiridas/complicações , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/complicações , Pneumonia/complicações , Doença Pulmonar Obstrutiva Crônica/complicações , Adulto , Idoso , Pré-Escolar , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Hospitals are vulnerable to COVID-19 outbreaks. Intrahospital transmission of the disease is a threat to the healthcare systems as it increases morbidity and mortality among patients. It is imperative to deepen our understanding of transmission events in hospital-associated cases of COVID-19 for timely implementation of infection prevention and control measures in the hospital in avoiding future outbreaks. We examined the use of epidemiological case investigation combined with whole genome sequencing of cases to investigate and manage a hospital-associated cluster of COVID-19 cases. METHODS: An epidemiological investigation was conducted in a University Hospital in Malaysia from 23 March to 22 April 2020. Contact tracing, risk assessment, testing, symptom surveillance, and outbreak management were conducted following the diagnosis of a healthcare worker with SARS-CoV-2 by real-time PCR. These findings were complemented by whole genome sequencing analysis of a subset of positive cases. RESULTS: The index case was symptomatic but did not fulfill the initial epidemiological criteria for routine screening. Contact tracing suggested epidemiological linkages of 38 cases with COVID-19. Phylogenetic analysis excluded four of these cases. This cluster included 34 cases comprising ten healthcare worker-cases, nine patient-cases, and 15 community-cases. The epidemic curve demonstrated initial intrahospital transmission that propagated into the community. The estimated median incubation period was 4.7 days (95% CI: 3.5-6.4), and the serial interval was 5.3 days (95% CI: 4.3-6.5). CONCLUSION: The study demonstrated the contribution of integrating epidemiological investigation and whole genome sequencing in understanding disease transmission in the hospital setting. Contact tracing, risk assessment, testing, and symptom surveillance remain imperative in resource-limited settings to identify and isolate cases, thereby controlling COVID-19 outbreaks. The use of whole genome sequencing complements field investigation findings in clarifying transmission networks. The safety of a hospital population during this COVID-19 pandemic may be secured with a multidisciplinary approach, good infection control measures, effective preparedness and response plan, and individual-level compliance among the hospital population.
Assuntos
COVID-19 , Surtos de Doenças , Hospitais Universitários , Humanos , Malásia/epidemiologia , Pandemias , Filogenia , SARS-CoV-2RESUMO
Enterovirus A71 (EV-A71) from the Picornaviridae family is an important emerging pathogen causing hand, foot, and mouth disease (HFMD) outbreaks worldwide. EV-A71 also caused fatal neurological complications in young children especially in Asia. On the basis of seroepidemiological studies from many Asian countries, EV-A71 infection is very common. Children of very young age are particularly vulnerable. Large-scale epidemics that occur every 3 to 4 years are associated with accumulation of an immunologically naive younger population. Capsid proteins especially VP1 with the presence of major B- and T-cell epitopes are the most antigenic proteins. The nonstructural proteins mainly contribute to T-cell epitopes that induce cross-reactive immune responses against other enteroviruses. Dominant epitopes and their neutralization magnitudes differ in mice, rabbits, and humans. Neutralizing antibody is sufficient for immune protection, but poorer cellular immunity may lead to severe neurological complications and deaths. Some chemokines/cytokines are consistently found in severely ill patients, for example, IL-6, IL-10, IL-17A, MCP-1, IL-8, MIG, IP-10, IFN-γ, and G-CSF. An increase in white cell counts is a risk factor for severe HFMD. Recent clinical trials on EV-A71 inactivated vaccine showed >90% efficacy and a robust neutralization response that was protective, indicating neutralizing antibody correlates for protection. No protection against other enteroviruses was observed. A comprehensive understanding of the immune responses to EV-A71 infection will benefit the development of diagnostic tools, potential therapeutics, and subunit vaccine candidates. Future development of a multivalent enterovirus vaccine will require knowledge of correlates of protection, understanding of cross-protection and memory T-cell responses among enteroviruses.
Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Animais , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/prevenção & controle , Humanos , Estudos Soroepidemiológicos , Vacinas Virais/imunologiaRESUMO
We tested a sample of 234 wild long-tailed macaques (Macaca fascicularis) trapped in Peninsular Malaysia in 2009, 2010, and 2016 for Zika virus RNA and antibodies. None were positive for RNA, and only 1.3% were seropositive for neutralizing antibodies. Long-tailed macaques are unlikely to be reservoirs for Zika virus in Malaysia.
Assuntos
Doenças dos Macacos/epidemiologia , Doenças dos Macacos/virologia , Infecção por Zika virus/veterinária , Zika virus , Animais , Animais Selvagens , Macaca fascicularis , Malásia/epidemiologia , RNA Viral , Sorogrupo , Zika virus/classificação , Zika virus/genéticaRESUMO
Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1â:â1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
Assuntos
Vírus Chikungunya/crescimento & desenvolvimento , Aptidão Genética , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Aedes , Animais , Linhagem Celular , Vírus Chikungunya/genética , Humanos , Proteínas Mutantes/genética , Seleção GenéticaRESUMO
Rapid diagnosis of influenza is important for early treatment and institution of control measures. In developing tropical countries such as Malaysia, influenza occurs all year round, but molecular assays and conventional techniques (such as immunofluorescence and culture) for diagnosis are not widely available. Rapid influenza diagnostic tests (RIDTs) may be useful in this setting. A total of 552 fresh respiratory specimens were assessed from patients with respiratory symptoms at a teaching hospital in Kuala Lumpur, Malaysia from November 2017 to March 2018. Two digital immunoassays (DIAs), STANDARD F Influenza A/B Fluorescence Immunoassay (STANDARD F) and Sofia Influenza A + B Fluorescence Immunoassay (Sofia) and one conventional RIDT (immunochromatographic assay), SD Bioline Influenza Ag A/B/A(H1N1) Pandemic rapid test kit (SD Bioline) were evaluated in comparison with a WHO-recommended reverse transcription quantitative PCR (RT-qPCR). Of the 552 samples, influenza A virus was detected in 47 (8.5%) and influenza B virus in 7 (1.3%). The digital immunoassays STANDARD F and Sofia had significantly higher overall sensitivity rates (71.7% and 70.6%, respectively) than the conventional RIDT SD Bioline and immunofluorescence/viral culture (55.8% and 52.8%, respectively). Sensitivity rates were higher for influenza A than influenza B, and specificity rates were uniformly high, ranging from 98% to 100%. Digital readout RIDTs can be used in tropical settings with year-round influenza if PCR is unavailable.
Assuntos
Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Hospitais de Ensino , Humanos , Lactente , Recém-Nascido , Malásia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Fatores de Tempo , Adulto JovemRESUMO
Influenza seasonality in equatorial countries is little understood. Seasonal and alert influenza thresholds were determined for Malaysia, using laboratory-based data obtained from the Malaysia Influenza Surveillance System and a major teaching hospital, from 2011 to 2016. Influenza was present year-round, with no clear annual seasons. Variable periods of higher transmission occurred inconsistently, in November to December, January to March, July to September, or a combination of these. These coincide with seasons in the nearby southeast Asian countries or winter seasons of the northern and southern hemispheres. Changes in the predominant circulating influenza type were only sometimes associated with increased transmission. The data can provide public health interventions such as vaccines.
Assuntos
Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Vigilância em Saúde Pública , Humanos , Vírus da Influenza A , Vírus da Influenza B , Malásia/epidemiologia , Clima TropicalRESUMO
Background: Rhinovirus (RV) is one of the main viral etiologic agents of acute respiratory illnesses. Despite the heightened disease burden caused by RV, the viral factors that increase the severity of RV infection, the transmission pattern, and seasonality of RV infections remain unclear. Methods: An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014. Results: The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate. Conclusions: Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.
Assuntos
Infecções por Picornaviridae/transmissão , Infecções Respiratórias/virologia , Rhinovirus/genética , Carga Viral , Doença Aguda/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Análise por Conglomerados , Feminino , Variação Genética , Genótipo , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Filogenia , Infecções por Picornaviridae/epidemiologia , RNA Viral/genética , Infecções Respiratórias/epidemiologia , Rhinovirus/isolamento & purificação , Análise de Sequência , Índice de Gravidade de Doença , Adulto JovemRESUMO
Enterovirus A71 (EV-A71) neutralization escape mutants were generated with monoclonal antibody MAB979 (Millipore). The VP2-T141I and VP1-D14N substitutions were identified. Using reverse genetics, infectious clones with these substitutions were constructed and tested by neutralization assay with immune sera from mice and humans. The N-terminus VP1-14 is more important than EF loop VP2-141 in acute human infection, mainly because it recognised IgM present in acute infection. The N-terminus VP1 could be a useful target for diagnostics and therapeutic antibodies in acute infection.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/imunologia , Epitopos/imunologia , Adulto , Animais , Proteínas do Capsídeo/genética , Mapeamento de Epitopos , Epitopos/genética , Humanos , Epitopos Imunodominantes/imunologia , Camundongos , Mutação de Sentido IncorretoRESUMO
BACKGROUND: Human metapneumovirus (HMPV) is established as one of the causative agents of respiratory tract infections. To date, there are limited reports that describe the effect of HMPV genotypes and/or viral load on disease pathogenesis in adults. This study aims to determine the role of HMPV genetic diversity and nasopharyngeal viral load on symptom severity in outpatient adults with acute respiratory tract infections. METHODS: Severity of common cold symptoms of patients from a teaching hospital was assessed by a four-category scale and summed to obtain the total symptom severity score (TSSS). Association between the fusion and glycoprotein genes diversity, viral load (quantified using an improved RT-qPCR assay), and symptom severity were analyzed using bivariate and linear regression analyses. RESULTS: Among 81/3706 HMPV-positive patients, there were no significant differences in terms of demographics, number of days elapsed between symptom onset and clinic visit, respiratory symptoms manifestation and severity between different HMPV genotypes/sub-lineages. Surprisingly, elderly patients (≥65 years old) had lower severity of symptoms (indicated by TSSS) than young and middle age adults (p = 0.008). Nasopharyngeal viral load did not correlate with nor predict symptom severity of HMPV infection. Interestingly, at 3-5 days after symptom onset, genotype A-infected patients had higher viral load compared to genotype B (4.4 vs. 3.3 log10 RNA copies/µl) (p = 0.003). CONCLUSIONS: Overall, HMPV genetic diversity and viral load did not impact symptom severity in adults with acute respiratory tract infections. Differences in viral load dynamics over time between genotypes may have important implications on viral transmission.
Assuntos
Genótipo , Interações Hospedeiro-Patógeno/genética , Metapneumovirus/genética , Infecções por Paramyxoviridae/diagnóstico , Infecções Respiratórias/diagnóstico , Doença Aguda , Idoso , Estudos de Coortes , Feminino , Variação Genética , Hospitais de Ensino , Humanos , Modelos Lineares , Malásia/epidemiologia , Masculino , Metapneumovirus/classificação , Metapneumovirus/isolamento & purificação , Metapneumovirus/patogenicidade , Pessoa de Meia-Idade , Epidemiologia Molecular , Nasofaringe/virologia , Pacientes Ambulatoriais , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/fisiopatologia , Infecções por Paramyxoviridae/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/fisiopatologia , Infecções Respiratórias/virologia , Índice de Gravidade de Doença , Carga ViralRESUMO
Influenza B virus causes significant disease but remains understudied in tropical regions. We sequenced 72 influenza B viruses collected in Kuala Lumpur, Malaysia, from 1995 to 2008. The predominant circulating lineage (Victoria or Yamagata) changed every 1 to 3 years, and these shifts were associated with increased incidence of influenza B. We also found poor lineage matches with recommended influenza virus vaccine strains. While most influenza B virus lineages in Malaysia were short-lived, one circulated for 3 to 4 years.
Assuntos
Evolução Molecular , Vírus da Influenza B/genética , Influenza Humana/genética , Sequência de Bases , Feminino , Humanos , Influenza Humana/epidemiologia , Malásia/epidemiologia , Masculino , Dados de Sequência MolecularAssuntos
COVID-19/epidemiologia , COVID-19/imunologia , Programas de Rastreamento , Adolescente , Adulto , Idoso , Teste Sorológico para COVID-19 , Criança , Pré-Escolar , Feminino , Humanos , Malásia/epidemiologia , Masculino , Programas de Rastreamento/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.