Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600799

RESUMO

DNA ligase I (LIG1) completes the base excision repair (BER) pathway at the last nick-sealing step after DNA polymerase (pol) ß gap-filling DNA synthesis. However, the mechanism by which LIG1 fidelity mediates the faithful substrate-product channeling and ligation of repair intermediates at the final steps of the BER pathway remains unclear. We previously reported that pol ß 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion confounds LIG1, leading to the formation of ligation failure products with a 5'-adenylate block. Here, using reconstituted BER assays in vitro, we report the mutagenic ligation of pol ß 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion products and an inefficient ligation of pol ß Watson-Crick-like dG:T mismatch insertion by the LIG1 mutant with a perturbed fidelity (E346A/E592A). Moreover, our results reveal that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3'-8-oxodG or mismatches is governed by mutations at both E346 and E592 residues. Finally, we found that aprataxin and flap endonuclease 1, as compensatory DNA-end processing enzymes, can remove the 5'-adenylate block from the abortive ligation products harboring 3'-8-oxodG or the 12 possible noncanonical base pairs. These findings contribute to the understanding of the role of LIG1 as an important determinant in faithful BER and how a multiprotein complex (LIG1, pol ß, aprataxin, and flap endonuclease 1) can coordinate to prevent the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA/fisiologia , DNA/metabolismo , DNA Ligase Dependente de ATP/fisiologia , Replicação do DNA , Endonucleases Flap/metabolismo , Humanos , Mutagênese , Mutagênicos , Mutação/genética , Nucleotídeos/metabolismo , Oxirredução
2.
Biophys J ; 119(10): 2029-2038, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33142107

RESUMO

The characterization of residual structures persistent in unfolded proteins in concentrated denaturant solution is currently an important issue in studies of protein folding because the residual structure present, if any, in the unfolded state may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the hydrogen/deuterium (H/D)-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride. We employed a dimethylsulfoxide (DMSO)-quenched H/D-exchange NMR technique with the use of spin desalting columns, which allowed us to perform a quick medium exchange from 6 M guanidinium chloride to a quenching DMSO solution. Based on the backbone resonance assignment of ubiquitin in the DMSO solution, we successfully investigated the H/D-exchange kinetics of 60 identified peptide amide groups in the ubiquitin sequence. Although a majority of these amide groups were not protected, certain amide groups involved in a middle helix (residues 23-34) and an N-terminal ß-hairpin (residues 2-16) were significantly protected with a protection factor of 2.1-4.2, indicating that there were residual structures in unfolded ubiquitin and that these amide groups were more than 52% hydrogen bonded in the residual structures. We show that the hydrogen-bonded residual structures in the α-helix and the ß-hairpin are formed even in 6 M guanidinium chloride, suggesting that these residual structures may function as a folding initiation site to guide the subsequent folding reactions of ubiquitin.


Assuntos
Hidrogênio , Ubiquitina , Deutério , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína
3.
Sci Adv ; 6(10): eaay7505, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181350

RESUMO

Membrane proteins must balance the sequence constraints associated with folding and function against the hydrophobicity required for solvation within the bilayer. We recently found the expression and maturation of rhodopsin are limited by the hydrophobicity of its seventh transmembrane domain (TM7), which contains polar residues that are essential for function. On the basis of these observations, we hypothesized that rhodopsin's expression should be less tolerant of mutations in TM7 relative to those within hydrophobic TM domains. To test this hypothesis, we used deep mutational scanning to compare the effects of 808 missense mutations on the plasma membrane expression of rhodopsin in HEK293T cells. Our results confirm that a higher proportion of mutations within TM7 (37%) decrease rhodopsin's plasma membrane expression relative to those within a hydrophobic TM domain (TM2, 25%). These results in conjunction with an evolutionary analysis suggest solvation energetics likely restricts the evolutionary sequence space of polar TM domains.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Rodopsina/química , Membrana Celular/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Solubilidade , Termodinâmica
4.
PLoS One ; 12(10): e0187022, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29059240

RESUMO

We studied the interaction between GroES and a single-ring mutant (SR1) of GroEL by the NMR titration of 15N-labeled GroES with SR1 at three different temperatures (20, 25 and 30°C) in the presence of 3 mM ADP in 100 mM KCl and 10 mM MgCl2 at pH 7.5. We used SR1 instead of wild-type double-ring GroEL to precisely control the stoichiometry of the GroES binding to be 1:1 ([SR1]:[GroES]). Native heptameric GroES was very flexible, showing well resolved cross peaks of the residues in a mobile loop segment (residue 17-34) and at the top of a roof hairpin (Asn51) in the heteronuclear single quantum coherence spectra. The binding of SR1 to GroES caused the cross peaks to disappear simultaneously, and hence it occurred in a single-step cooperative manner with significant immobilization of the whole GroES structure. The binding was thus entropic with a positive entropy change (219 J/mol/K) and a positive enthalpy change (35 kJ/mol), and the binding constant was estimated at 1.9×105 M-1 at 25°C. The NMR titration in 3 mM ATP also indicated that the binding constant between GroES and SR1 increased more than tenfold as compared with the binding constant in 3 mM ADP. These results will be discussed in relation to the structure and mechanisms of the chaperonin GroEL/GroES complex.


Assuntos
Chaperoninas/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Termodinâmica
5.
Protein Sci ; 22(4): 486-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23339068

RESUMO

Dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange is a powerful method to characterize the H/D-exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non-protected fast-exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO-quenched H/D-exchange studies of proteins so far reported, lyophilization was used to remove D2 O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two-dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2 O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D-exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride.


Assuntos
Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Medição da Troca de Deutério/métodos , Dimetil Sulfóxido/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sais/isolamento & purificação , Liofilização , Humanos , Modelos Químicos , Ubiquitina/análise , Ubiquitina/química
6.
J Mol Biol ; 425(14): 2541-60, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23583779

RESUMO

We studied hydrogen/deuterium-exchange reactions of peptide amide protons of GroES using two different techniques: (1) two-dimensional (1)H-(15)N transverse-optimized NMR spectroscopy and (2) the dimethylsulfoxide-quenched hydrogen-exchange method combined with conventional (1)H-(15)N heteronuclear single quantum coherence spectroscopy. By using these techniques together with direct heteronuclear single quantum coherence experiments, we quantitatively evaluated the exchange rates for 33 out of the 94 peptide amide protons of GroES and their protection factors, and for the remaining 61 residues, we obtained the lower limits of the exchange rates. The protection factors of the most highly protected amide protons were on the order of 10(6)-10(7), and the values were comparable in magnitude to those observed in typical small globular proteins, but the number of the highly protected amide protons with a protection factor larger than 10(6) was only 10, significantly smaller than the numbers reported for the small globular proteins, indicating that significant portions of free heptameric GroES are flexible and natively unfolded. The highly protected amino acid residues with a protection factor larger than 10(5) were mainly located in three ß-strands that form the hydrophobic core of GroES, while the residues in a mobile loop (residues 17-34) were not highly protected. The protection factors of the most highly protected amide protons were orders of magnitude larger than the value expected from the equilibrium unfolding parameters previously reported, strongly suggesting that the equilibrium unfolding of GroES is more complicated than a simple two-state or three-state mechanism and may involve more than a single intermediate.


Assuntos
Chaperonina 10/química , Chaperonina 10/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Desdobramento de Proteína , Medição da Troca de Deutério , Dimetil Sulfóxido/metabolismo , Hidrogênio/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA