Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 102(1): 188-195, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304374

RESUMO

Fucosyltransferase 8 (FUT8) encodes a Golgi-localized α1,6 fucosyltransferase that is essential for transferring the monosaccharide fucose into N-linked glycoproteins, a process known as "core fucosylation." Here we describe three unrelated individuals, who presented with intrauterine growth retardation, severe developmental and growth delays with shortened limbs, neurological impairments, and respiratory complications. Each underwent whole-exome sequencing and was found to carry pathogenic variants in FUT8. The first individual (consanguineous family) was homozygous for c.715C>T (p.Arg239∗), while the second (non-consanguineous family) was compound heterozygous for c.1009C>G (p.Arg337Gly) and a splice site variant c.1259+5G>T. The third individual (consanguineous family) was homozygous for a c.943C>T (p.Arg315∗). Splicing analysis confirmed the c.1259+5G>T resulted in expression of an abnormal FUT8 transcript lacking exon 9. Functional studies using primary fibroblasts from two affected individuals revealed a complete lack of FUT8 protein expression that ultimately resulted in substantial deficiencies in total core fucosylated N-glycans. Furthermore, serum samples from all three individuals showed a complete loss of core fucosylation. Here, we show that loss of function mutations in FUT8 cause a congenital disorder of glycosylation (FUT8-CDG) characterized by defective core fucosylation that phenotypically parallels some aspects of the Fut8-/- knockout mouse. Importantly, identification of additional affected individuals can be easily achieved through analysis of core fucosylation of N-glycans.


Assuntos
Alelos , Fucose/genética , Fucosiltransferases/genética , Mutação/genética , Processamento Alternativo/genética , Células Cultivadas , Criança , Pré-Escolar , Evolução Fatal , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Humanos , Lectinas/metabolismo , Masculino , Polissacarídeos/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Neurology ; 81(16): 1378-86, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24078737

RESUMO

OBJECTIVE: To identify the genetic cause of a syndrome causing cerebellar ataxia and eye movement abnormalities. METHODS: We identified 2 families with cerebellar ataxia, eye movement abnormalities, and global developmental delay. We performed genetic analyses including single nucleotide polymorphism genotyping, linkage analysis, array comparative genomic hybridization, quantitative PCR, and Sanger sequencing. We obtained eye movement recordings of mutant mice deficient for the ortholog of the identified candidate gene, and performed immunohistochemistry using human and mouse brain specimens. RESULTS: All affected individuals had ataxia, eye movement abnormalities, most notably tonic upgaze, and delayed speech and cognitive development. Homozygosity mapping identified the disease locus on chromosome 4q. Within this region, a homozygous deletion of GRID2 exon 4 in the index family and compound heterozygous deletions involving GRID2 exon 2 in the second family were identified. Grid2-deficient mice showed larger spontaneous and random eye movements compared to wild-type mice. In developing mouse and human cerebella, GRID2 localized to the Purkinje cell dendritic spines. Brain MRI in 2 affected children showed progressive cerebellar atrophy, which was more severe than that of Grid2-deficient mice. CONCLUSIONS: Biallelic deletions of GRID2 lead to a syndrome of cerebellar ataxia and tonic upgaze in humans. The phenotypic resemblance and similarity in protein expression pattern between humans and mice suggest a conserved role for GRID2 in the synapse organization between parallel fibers and Purkinje cells. However, the progressive and severe cerebellar atrophy seen in the affected individuals could indicate an evolutionarily unique role for GRID2 in the human cerebellum.


Assuntos
Ataxia Cerebelar/genética , Transtornos da Motilidade Ocular/genética , Receptores de Glutamato/genética , Adolescente , Animais , Criança , Pré-Escolar , Éxons/genética , Feminino , Genes Recessivos/genética , Humanos , Masculino , Camundongos , Deleção de Sequência/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA