Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Chemistry ; 29(46): e202301610, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265455

RESUMO

N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.

2.
Chemistry ; 25(49): 11481-11485, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31206813

RESUMO

N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.

3.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371306

RESUMO

A basic understanding of the driving forces for the formation of multiligand coronas or self-assembled monolayers over metal nanoparticles is mandatory to control and predict the properties of ligand-protected nanoparticles. Herein, 1 H nuclear magnetic resonance experiments and advanced density functional theory (DFT) modeling are combined to highlight the key parameters defining the efficiency of ligand exchange on dispersed gold nanoparticles. The compositions of the surface and of the liquid reaction medium are quantitatively correlated for bifunctional gold nanoparticles protected by a range of competing thiols, including an alkylthiol, arylthiols of varying chain length, thiols functionalized by ethyleneglycol units, and amide groups. These partitions are used to build scales that quantify the ability of a ligand to exchange dodecanethiol. Such scales can be used to target a specific surface composition by choosing the right exchange conditions (ligand ratio, concentrations, and particle size). In the specific case of arylthiols, the exchange ability scale is exploited with the help of DFT modeling to unveil the roles of intermolecular forces and entropic effects in driving ligand exchange. It is finally suggested that similar considerations may apply to other ligands and to direct biligand synthesis.

4.
J Synchrotron Radiat ; 24(Pt 5): 991-999, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862621

RESUMO

The new rapid scan method, Flyscan mode, implemented on the DiffAbs beamline at Synchrotron SOLEIL, allows fast micro-X-ray fluorescence data acquisition. It paves the way for applications in the biomedical field where a large amount of data is needed to generate meaningful information for the clinician. This study presents a complete set of data acquired after injection of gold-cluster-enriched mesoporous silica nanospheres, used as potential theranostic vectors, into rats. While classical X-ray fluorescence investigations (using step-by-step acquisitions) are based on a limited number of samples (approximately one per day at the DiffAbs beamline), the Flyscan mode has enabled gathering information on the interaction of nanometer-scale vectors in different organs such as liver, spleen and kidney at the micrometer scale, for five rats, in only a single five-day synchrotron shift. Moreover, numerous X-ray absorption near-edge structure spectra, which are beam-time-consuming taking into account the low concentration of these theranostic vectors, were collected.

5.
Environ Sci Technol ; 50(13): 6892-901, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27243334

RESUMO

Soils act as nanoceria sinks via agricultural spreading and surface waters. Canola plants were grown for one month in soil spiked with nanoceria (1 mg·kg(-1)). To define the role of nanomaterials design on environmental impacts, we studied nanoceria with different sizes (3.5 or 31 nm) and coating (citrate). We measured microbial activities involved in C, N, and P cycling in the rhizosphere and unplanted soil. Bacterial community structure was analyzed in unplanted soil, rhizosphere, and plant roots by 454-pyrosequencing of the 16S rRNA gene. This revealed an impact gradient dependent on nanomaterials design, ranging from decreased microbial enzymatic activities in planted soil to alterations in bacterial community structure in roots. Particle size/aggregation was a key parameter in modulating nanoceria effects on root communities. Citrate coating lowered the impact on microbial enzymatic activities but triggered variability in the bacterial community structure near the plant root. Some nanoceria favored taxa whose closest relatives are hydrocarbon-degrading bacteria and disadvantaged taxa frequently associated in consortia with disease-suppressive activity toward plant pathogens. This work provides a basis to determine outcomes of nanoceria in soil, at a dose close to predicted environmental concentrations, and to design them to minimize these impacts.


Assuntos
Microbiologia do Solo , Solo/química , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera
6.
Environ Sci Technol ; 49(4): 2451-9, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25587677

RESUMO

The ecotoxicity of nanoparticles (NPs) is a growing area of research with many challenges ahead. To be relevant, laboratory experiments must be performed with well-controlled and environmentally realistic (i.e., low) exposure doses. Moreover, when focusing on the intensively manufactured titanium dioxide (TiO2) NPs, sample preparations and chemical analysis are critical steps to meaningfully assay NP's bioaccumulation. To deal with these imperatives, we synthesized for the first time TiO2 NPs labeled with the stable isotope (47)Ti. Thanks to the (47)Ti labeling, we could detect the bioaccumulation of NPs in zebra mussels (Dreissena polymorpha) exposed for 1 h at environmental concentrations via water (7-120 µg/L of (47)TiO2 NPs) and via their food (4-830 µg/L of (47)TiO2 NPs mixed with 1 × 10(6) cells/mL of cyanobacteria) despite the high natural Ti background, which varied in individual mussels. The assimilation efficiency (AE) of TiO2 NPs by mussels from their diet was very low (AE = 3.0 ± 2.7%) suggesting that NPs are mainly captured in mussel gut, with little penetration in their internal organs. Thus, our methodology is particularly relevant in predicting NP's bioaccumulation and investigating the factors influencing their toxicokinetics in conditions mimicking real environments.


Assuntos
Dreissena/metabolismo , Nanopartículas/metabolismo , Titânio/farmacocinética , Animais , Cianobactérias , Dreissena/efeitos dos fármacos , Exposição Ambiental/análise , Cadeia Alimentar , Marcação por Isótopo , Isótopos/análise , Nanopartículas/toxicidade , Distribuição Tecidual , Titânio/análise , Titânio/química , Poluentes Químicos da Água/farmacocinética
7.
Environ Sci Technol ; 48(9): 5245-53, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24697310

RESUMO

TiO2-based nanocomposite (NC) are widely used as invisible UV protectant in cosmetics. These nanomaterials (NMs) end in the environment as altered materials. We have investigated the properties of T-Lite SF, a TiO2-NC used as sunscreen, after weathering in water and under light. We have examined the formation of ROS and their consequences on cell physiology of Escherichia coli. Our results show that aged-T-Lite SF produced singlet oxygen under low intensity long wave UV and formed hydroxyl radicals at high intensity. Despite the production of these ROS, T-Lite SF had neither effect on the viability of E. coli nor on mutant impaired in oxidative stress, did not induce mutagenesis and did not impair the integrity of membrane lipids, thus seemed safe to bacteria. However, when pre-exposed to T-Lite SF under low intensity UV, cells turned out to be more sensitive to cadmium, a priority pollutant widely disseminated in soil and surface waters. This effect was not a Trojan horse: sensitization of cells was dependent on the formation of singlet oxygen. These results provide a basis for caution, especially on NMs that have no straight environmental toxicity. It is crucial to anticipate indirect and combined effects of environmental pollutants and NMs.


Assuntos
Cádmio/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Nanocompostos , Oxigênio Singlete/química , Protetores Solares/química , Titânio/química , Raios Ultravioleta , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Radical Hidroxila/química , Microscopia Eletrônica de Varredura , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Part Fibre Toxicol ; 11: 13, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666995

RESUMO

BACKGROUND: TiO2 particles are commonly used as dietary supplements and may contain up to 36% of nano-sized particles (TiO2-NPs). Still impact and translocation of NPs through the gut epithelium is poorly documented. RESULTS: We show that, in vivo and ex vivo, agglomerates of TiO2-NPs cross both the regular ileum epithelium and the follicle-associated epithelium (FAE) and alter the paracellular permeability of the ileum and colon epithelia. In vitro, they accumulate in M-cells and mucus-secreting cells, much less in enterocytes. They do not cause overt cytotoxicity or apoptosis. They translocate through a model of FAE only, but induce tight junctions remodeling in the regular ileum epithelium, which is a sign of integrity alteration and suggests paracellular passage of NPs. Finally we prove that TiO2-NPs do not dissolve when sequestered up to 24 h in gut cells. CONCLUSIONS: Taken together these data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer's patches, would induce epithelium impairment, and would persist in gut cells where they would possibly induce chronic damage.


Assuntos
Epitélio/metabolismo , Trato Gastrointestinal/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Titânio/farmacocinética , Titânio/toxicidade , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Absorção Intestinal , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria por Raios X , Suspensões , Titânio/química , Espectroscopia por Absorção de Raios X
9.
Nanoscale ; 15(42): 17085-17096, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37847496

RESUMO

Biomedical photothermal therapy with optical nanoparticles is based on the conversion of optical energy into heat through three steps: optical absorption, thermal conversion of the absorbed energy and heat transfer to the surrounding medium. The light-to-heat conversion efficiency (LHCE) has become one of the main metrics to quantitatively characterize the last two steps and evaluate the merit of nanoparticules for photothermal therapy. The estimation of the LHCE is mostly performed by monitoring the temperature evolution of a solution under laser irradiation. However, this estimation strongly depends on the experimental set-up and the heat balance model used. We demonstrate here, theoretically and experimentally, that the LHCE at multiple wavelengths can be efficiently and directly determined, without the use of models, by calibrated photoacoustic spectroscopy. The method was validated using already characterized colloidal suspensions of silver sulfide nanoparticles and maghemite nanoflowers and an uncertainty of 3 to 7% was estimated for the LHCE determination. Photoacoustic spectroscopy provides a new, precise and robust method of analysis of the photothermal capabilities of aqueous solutions of nanoagents.

10.
Environ Sci Technol ; 46(19): 10789-96, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22920588

RESUMO

This study investigates the issue of nanoparticles/pollutants cocontamination. By combining viability assays, physicochemical and structural analysis (to probe the As speciation and valence), we assessed how γFe(2)O(3) nanoparticles can affect the cytotoxicity, the intra- and extracellular speciation of As(III). Human dermal fibroblasts were contaminated with γFe(2)O(3) nanoparticles and As(III) considering two scenarios: (i) a simultaneous coinjection of the nanoparticles and As, and (ii) an injection of the nanoparticles after 24 h of As adsorption in water. In both scenarios, we did not notice significant changes on the nanoparticles surface charge (zeta potential ∼ -10 mV) nor hydrodynamic diameters (∼950 nm) after 24 h. We demonstrated that the coinjection of γFe(2)O(3) nanoparticles and As in the cellular media strongly affects the complexation of the intracellular As with thiol groups. This significantly increases at low doses the cytotoxicity of the As nonadsorbed at the surface of the nanoparticles. However, once As is adsorbed at the surface the desorption is very weak in the culture medium. This fraction of As strongly adsorbed at the surface is significantly less cytotoxic than As itself. On the basis of our data and the thermodynamics, we demonstrated that any disturbance of the biotransformation mechanisms by the nanoparticles (i.e., surface complexation of thiol groups with the iron atoms) is likely to be responsible for the increase of the As adverse effects at low doses.


Assuntos
Arsênio/toxicidade , Fibroblastos/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Adsorção , Arsênio/farmacocinética , Células Cultivadas , Meios de Cultura , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Metaloides , Pele/citologia , Termodinâmica
11.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159767

RESUMO

Acceptability and relevance of nanoparticles in the society is greatly improved using a safer-by-design strategy. However, this is difficult to implement when too late in the development process or when nanoparticles are already on the market (e.g., TiO2). We employ this strategy for emerging nanoparticles of lanthanide oxysulfide of formula (Gd,Ce)2O2S, relevant for photocatalysis as well as for multimodal imaging, as the bandgap of the nanoparticles, related to their Ce content, impacts their ability to absorb visible light. As a first step, we investigated the production of reactive oxygen species (ROS) as a function of cerium content, in abiotic conditions and in vitro using murine macrophage RAW 264.7 cell line. We demonstrate that, at sub-lethal doses, Ce-containing oxysulfide nanoparticles are responsible for a higher ROS intracellular formation than cerium-free Gd2O2S nanoparticles, although no significant inflammatory response or oxidative stress was measured. Moreover, there was no significant loss of cerium as free cation from the nanoparticles, as evidenced by X-ray fluorescence mapping. Based on these results, we propose a risk analysis for lanthanide oxysulfide nanoparticles, leading to a technology assessment that fulfills the safer-by-design strategy.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35848997

RESUMO

Functional colloidal nanoparticles capable of converting between various energy types are finding an increasing number of applications. One of the relevant examples concerns light-to-heat-converting colloidal nanoparticles that may be useful for localized photothermal therapy of cancers. Unfortunately, quantitative comparison and ranking of nanoheaters are not straightforward as materials of different compositions and structures have different photophysical and chemical properties and may interact differently with the biological environment. In terms of photophysical properties, the most relevant information to rank these nanoheaters is the light-to-heat conversion efficiency, which, along with information on the absorption capacity of the material, can be used to directly compare materials. In this work, we evaluate the light-to-heat conversion properties of 17 different nanoheaters belonging to different groups (plasmonic, semiconductor, lanthanide-doped nanocrystals, carbon nanocrystals, and metal oxides). We conclude that the light-to-heat conversion efficiency alone is not meaningful enough as many materials have similar conversion efficiencies─in the range of 80-99%─while they significantly differ in their extinction coefficient. We therefore constructed their qualitative ranking based on the external conversion efficiency, which takes into account the conventionally defined light-to-heat conversion efficiency and its absorption capacity. This ranking demonstrated the differences between the samples more meaningfully. Among the studied systems, the top-ranking materials were black porous silicon and CuS nanocrystals. These results allow us to select the most favorable materials for photo-based theranostics and set a new standard in the characterization of nanoheaters.

13.
Phys Chem Chem Phys ; 13(13): 6241-8, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21365095

RESUMO

Polyols were successfully used as size and shape controllers of oxide nanoparticles synthesized by soft chemistry in aqueous solution. The efficiency of acyclic polyols as a complexing agent depends obviously on the number of OH groups bonded to the carbon chain (and thus on the carbon chain length), but also on their stereochemistry. This innovating way to control morphology has been experienced for the synthesis of boehmite nanoparticles, whose morphology variations related to xylitol adsorption (C5 alditol) have been previously reported. The use of polyols during synthesis causes a modification of the usual morphologies observed, specifically resulting in an increase of (101) faces area. It is evidenced here that the variations of the nanoparticle aspect ratio are related to polyol complexing ability, and more specifically to molecule topology and configuration. Indeed, the morphology variations increase as a function of polyol carbon chain length and number of hydroxyl groups, and is much pronounced for stereoisomers exhibiting hydroxyl groups all oriented on the same side of the molecule (threo-threo sequences). Thanks to these various polyols used, we showed how the progressive levels of complexing ability allow us to tune boehmite particle size and shape. Material characterizations were performed using relevant methods such as X-ray diffraction powder pattern simulation and zetametry in addition to transmission electron microscopy. Since γ-alumina is obtained from boehmite by a topotactic transformation, we expect that this method will provide a promising way to control surface properties of γ-alumina, an important industrial catalyst support.

14.
J Acoust Soc Am ; 129(3): 1209-20, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21428484

RESUMO

Experiments are carried out to assess, for the first time, the validity of a generalized Burgers' equation, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331-1342 (1973)] to compute the nonlinear propagation of finite amplitude acoustical waves in suspensions of "rigid" particles. Silica nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water-ethanol mixture and precisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1 MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steepening. The signal is then measured after propagation in a cylinder containing either a reference solution or suspensions of nanoparticles. In this way, a "nonlinear attenuation" is obtained and compared to the numerical solution of a generalized Burgers' equation adapted to the case of hydrosols. An excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due to the value of the specific heat ratio of water-ethanol mixture which significantly differs from unity.


Assuntos
Ondas de Choque de Alta Energia , Nanopartículas , Dinâmica não Linear , Espalhamento de Radiação , Dióxido de Silício , Ultrassom , Simulação por Computador , Etanol , Análise de Fourier , Análise Numérica Assistida por Computador , Tamanho da Partícula , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo , Água
15.
Nanoscale Adv ; 3(10): 2862-2869, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36134193

RESUMO

Heat measurement induced by photoexcitation of a plasmonic metal nanoparticle assembly under environmental conditions is of primary importance for the further development of applications in the fields of (photo)catalysis, nanoelectronics and nanomedicine. Nevertheless, the fine control of the rise in temperature remains difficult and limits the use of this technology due to the lack of local temperature measurement tools working under environmental conditions. Luminescence nanothermometers are an alternative solution to the limitations of conventional contact thermometers since they are able to give an absolute temperature value with high spatial resolution using common optical equipment. As a proof of concept of this nanothermometry approach, a high local temperature exceeding one hundred degrees is measured on the thermalized photoexcited aggregate of gold nanorods using ZnGa2O4:Cr3+,Bi3+ nanothermometers that have a strong temperature dependence on the luminescence lifetime of chromium(iii) and high sensitivity over an extensive range of temperatures. A study on the influence of the average distance between nanosensors and nanoheaters on the measured temperature is carried out by coating the nanosensors with a silica layer of tunable thickness, highlighting the temperature gradient at the vicinity of the nanoheater as the theory predicts. The variation of the optical nanosensor response is relevant and promising, and it could be further envisioned as a potential candidate for local temperature measurement at the nanoscale since no plasmonic effect on Cr3+ lifetime is observed. The results reported here open up an even wider field of application for high temperature nanothermometry on real samples such as aggregate particles for many applications including catalysis and nanoelectronics. Thermometry using luminescent nanoprobes, which is complementary to thermal microscopy techniques, will allow in situ and in operando temperature monitoring at very small scales.

16.
Environ Sci Pollut Res Int ; 28(6): 7564-7573, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33033933

RESUMO

The increasingly frequent detection of resistant organic micropollutants in waters calls for better treatment of these molecules that are recognized to be dangerous for human health and the environment. As an alternative to conventional adsorbent material such as activated carbon, silica-clay nanocomposites were synthesized for the removal of pharmaceuticals in contaminated water. Their efficiency with respect to carbamazepine, ciprofloxacin, danofloxacin, doxycycline, and sulfamethoxazole was assessed in model water and real groundwater spiked with the five contaminants. Results showed that the efficacy of contaminant removal depends on the chemical properties of the micropollutants. Among the adsorbents tested, the nanocomposite made of 95% clay and 5% SiO2 NPs was the most efficient and was easily recovered from solution after treatment compared with pure clay, for example. The composite is thus a good candidate in terms of operating costs and environmental sustainability for the removal of organic contaminants.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Argila , Humanos , Dióxido de Silício , Água , Poluentes Químicos da Água/análise
17.
Langmuir ; 26(7): 4586-9, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20180581

RESUMO

We report the elaboration of a hybrid mesophase combining the lamellar order of a lyotropic system of nonionic surfactant and the nematic order of a concentrated solution of inorganic nanorods confined between the surfactant layers. Highly aligned samples of this mesophase can be obtained by thermal annealing, and the orientation of the nanorods is readily controlled with a magnetic field. High-resolution synchrotron X-ray scattering and polarized optical microscopy show that, compared to their isolated counterparts, both the nematic and lamellar orders are altered, demonstrating their interplay.


Assuntos
Nanotubos/química , Microscopia , Modelos Teóricos , Nanotecnologia/métodos , Espalhamento de Radiação , Tensoativos/química
18.
J Chem Phys ; 132(9): 091101, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20210381

RESUMO

Using x-ray photon correlation spectroscopy, we studied the dynamics in the nematic phase of a nanorod suspension. The collective diffusion coefficient in the plane perpendicular to the director varies sharply with the wave vector. Combining the structure factor and the diffusion coefficient, we find that the hydrodynamic function of the phase decreases by more than a factor of 10 when going from length scales comparable to the interparticle distance toward larger values. Thus, the collective dynamics of the nematic phase experiences strong and scale-dependent slowing down, in contrast with isotropic suspensions of slender rods or of spherical particles.

19.
Nanoscale ; 12(25): 13368-13376, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32373825

RESUMO

Engineering photothermal effects in plasmonic materials is of paramount importance for many applications, such as cancer therapy, chemical synthesis, cold catalysis and, more recently, metasurfaces. The evaluation of plasmonic heating at the nanoscale is challenging and generally requires sophisticated equipments and/or temperature-sensitive probes such as fluorescent molecules or materials. Here, we propose to use water vapor as a probe to evaluate the local heating around plasmonic nanoparticles. We demonstrate the concept for the case of a plasmonic colloidal film characterized by bi-modal nanoporosity. In particular, we exploit the thermal and light water liquid-vapor phase transitions taking place in the nanoporous medium that can be triggered by external stimuli, such as heating or irradiation, to obtain structural and optical variations in the film. The local temperature is then estimated using spectroscopic ellipsometry data acquired by a multimodal chamber. More generally, this method offers a simple and general approach to determine the local temperature that only requires a nanoporous material and water vapor, such as environmental humidity. In addition, this approach can be further generalized to other materials, vapor molecules or optical techniques.

20.
ACS Appl Mater Interfaces ; 12(12): 13598-13612, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32077678

RESUMO

Mesoporous silica nanoparticles (MSNs) have seen a fast development as drug delivery carriers thanks to their tunable porosity and high loading capacity. The employ of MSNs in biomedical applications requires a good understanding of their degradation behavior both to control drug release and to assess possible toxicity issues on human health. In this work, we study mesoporous silica degradation in biologically relevant conditions through in situ ellipsometry on model mesoporous nanoparticle or continuous thin films, in buffer solution and in media containing proteins. In order to shed light on the structure/dissolution relationship, we performed dissolution experiments far from soluble silicate species saturation. Via a complete decorrelation of dissolution and diffusion contributions, we proved unambiguously that surface area of silica vectors is the main parameter influencing dissolution kinetics, while thermal treatment and open mesoporous network architecture have a minor impact. As a logical consequence of our dissolution model, we proved that the dissolution lag-time can be promoted by selective blocking of the mesopores that limits the access to the mesoporous internal surface. This study was broadened by studying the impact of the organosilanes in the silica structure, of the presence of residual structuring agents, and of the chemical composition of the dissolution medium. The presence of albumin at blood concentration was found affecting drastically the dissolution kinetics of the mesoporous structure, acting as a diffusion barrier. Globally, we could identify the main factors affecting mesoporous silica materials degradation and proved that we can tune their structure and composition for adjusting dissolution kinetics in order to achieve efficient drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Proteínas/química , Dióxido de Silício/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Cinética , Nanopartículas/uso terapêutico , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA