Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 29(10): 1575-1590, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460153

RESUMO

Current methods for detecting unlabeled antisense oligonucleotide (ASO) drugs rely on immunohistochemistry (IHC) and/or conjugated molecules, which lack sufficient sensitivity, specificity, and resolution to fully investigate their biodistribution. Our aim was to demonstrate the qualitative and quantitative distribution of unlabeled bepirovirsen, a clinical stage ASO, in livers and kidneys of dosed mice using novel staining and imaging technologies at subcellular resolution. ASOs were detected in formalin-fixed paraffin-embedded (FFPE) and frozen tissues using an automated chromogenic in situ hybridization (ISH) assay: miRNAscope. This was then combined with immunohistochemical detection of cell lineage markers. ASO distribution in hepatocytes versus nonparenchymal cell lineages was quantified using HALO AI image analysis. To complement this, hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) imaging microscopy was used to specifically detect the unique cellular Raman spectral signatures following ASO treatment. Bepirovirsen was localized primarily in nonparenchymal liver cells and proximal renal tubules. Codetection of ASO with distinct cell lineage markers of liver and kidney populations aided target cell identity facilitating quantification. Positive liver signal was quantified using HALO AI, with 12.9% of the ASO localized to the hepatocytes and 87.1% in nonparenchymal cells. HS-CARS imaging specifically detected ASO fingerprints based on the unique vibrational signatures following unlabeled ASO treatment in a totally nonperturbative manner at subcellular resolution. Together, these novel detection and imaging modalities represent a significant increase in our ability to detect unlabeled ASOs in tissues, demonstrating improved levels of specificity and resolution. These methods help us understand their underlying mechanisms of action and ultimately improve the therapeutic potential of these important drugs for treating globally significant human diseases.


Assuntos
Fígado , Oligonucleotídeos Antissenso , Camundongos , Humanos , Animais , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Distribuição Tecidual , Fígado/diagnóstico por imagem , Fígado/metabolismo , Hibridização In Situ , Coloração e Rotulagem
2.
Opt Lett ; 49(9): 2513-2516, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691757

RESUMO

Hyperspectral coherent Raman scattering microscopy provides a significant improvement in acquisition time compared to spontaneous Raman scattering yet still suffers from the time required to sweep through individual wavenumbers. To address this, we present the use of a pulse shaper with a 2D spatial light modulator for phase- and amplitude-based shaping of the Stokes beam to create programmable spectrally tailored excitation envelopes. This enables collection of useful spectral information in a more rapid and efficient manner.

3.
Anal Chem ; 95(29): 10957-10965, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450658

RESUMO

Understanding drug fingerprints in complex biological samples is essential for the development of a drug. Hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) microscopy, a label-free nondestructive chemical imaging technique, can profile biological samples based on their endogenous vibrational contrast. Here, we propose a deep learning-assisted HS-CARS imaging approach for the investigation of drug fingerprints and their localization at single-cell resolution. To identify and localize drug fingerprints in complex biological systems, an attention-based deep neural network, hyperspectral attention net (HAN), was developed. By formulating the task to a multiple instance learning problem, HAN highlights informative regions through the attention mechanism when being trained on whole-image labels. Using the proposed technique, we investigated the drug fingerprints of a hepatitis B virus therapy in murine liver tissues. With the increase in drug dosage, higher classification accuracy was observed, with an average area under the curve (AUC) of 0.942 for the high-dose group. Besides, highly informative tissue structures predicted by HAN demonstrated a high degree of similarity with the drug localization shown by the in situ hybridization staining results. These results demonstrate the potential of the proposed deep learning-assisted optical imaging technique for the label-free profiling, identification, and localization of drug fingerprints in biological samples, which can be extended to nonperturbative investigations of complex biological systems under various biological conditions.


Assuntos
Microscopia , Análise Espectral Raman , Animais , Camundongos , Microscopia/métodos , Análise Espectral Raman/métodos , Fígado , Redes Neurais de Computação
4.
IEEE J Sel Top Quantum Electron ; 29(4 Biophotonics)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193134

RESUMO

Hematoxylin and eosin (H&E) staining, the century-old technique, has been the gold standard tool for pathologists to detect anomalies in tissues and diseases such as cancer. H&E staining is a cumbersome, time-consuming process that delays and wastes precious minutes during an intraoperative diagnosis. However, even in the modern era, real-time label-free imaging techniques such as simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy have delivered several more layers of information to characterize a tissue with high precision. Still, they have yet to translate to the clinic. The slow translation rate can be attributed to the lack of direct comparisons between the old and new techniques. Our approach to solving this problem is to: 1) reduce dimensions by pre-sectioning the tissue in 500 µm slices, and 2) produce fiducial laser markings which appear in both SLAM and histological imaging. High peak-power femtosecond laser pulses enable ablation in a controlled and contained manner. We perform laser marking on a grid of points encompassing the SLAM region of interest. We optimize laser power, numerical aperture, and timing to produce axially extended marking, hence multilayered fiducial markers, with minimal damage to the surrounding tissues. We performed this co-registration over an area of 3 × 3 mm2 of freshly excised mouse kidney and intestine, followed by standard H&E staining. Reduced dimensionality and the use of laser markings provided a comparison of the old and new techniques, giving a wealth of correlative information and elevating the potential of translating nonlinear microscopy to the clinic for rapid pathological assessment.

5.
Proc Natl Acad Sci U S A ; 116(48): 24012-24018, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31732668

RESUMO

Despite extensive interest, extracellular vesicle (EV) research remains technically challenging. One of the unexplored gaps in EV research has been the inability to characterize the spatially and functionally heterogeneous populations of EVs based on their metabolic profile. In this paper, we utilize the intrinsic optical metabolic and structural contrast of EVs and demonstrate in vivo/in situ characterization of EVs in a variety of unprocessed (pre)clinical samples. With a pixel-level segmentation mask provided by the deep neural network, individual EVs can be analyzed in terms of their optical signature in the context of their spatial distribution. Quantitative analysis of living tumor-bearing animals and fresh excised human breast tissue revealed abundance of NAD(P)H-rich EVs within the tumor, near the tumor boundary, and around vessel structures. Furthermore, the percentage of NAD(P)H-rich EVs is highly correlated with human breast cancer diagnosis, which emphasizes the important role of metabolic imaging for EV characterization as well as its potential for clinical applications. In addition to the characterization of EV properties, we also demonstrate label-free monitoring of EV dynamics (uptake, release, and movement) in live cells and animals. The in situ metabolic profiling capacity of the proposed method together with the finding of increasing NAD(P)H-rich EV subpopulations in breast cancer have the potential for empowering applications in basic science and enhancing our understanding of the active metabolic roles that EVs play in cancer progression.


Assuntos
Neoplasias da Mama/patologia , Vesículas Extracelulares/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Animais , Humanos , Modelos Logísticos , Redes Neurais de Computação , Ratos
6.
Clin Infect Dis ; 73(Suppl 1): S84-S91, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33956123

RESUMO

BACKGROUND: As a result of the continuing surge of coronavirus disease 2019 (COVID-19), many patients have delayed or missed routine screening and preventive services. Medical conditions, such as coronary heart disease, mental health issues, and substance use disorder, may be identified later, leading to increases in patient morbidity and mortality. METHODS: National Emergency Medical Services Information System data were used to assess 911 emergency medical services (EMS) activations during 2018-2020. For specific activation types, the percentage of total activations was calculated per week, and Joinpoint analysis was used to identify changes over time. RESULTS: Since March 2020, the number of 911 EMS activations has decreased, while the percentages of on-scene death, cardiac arrest, and opioid use/overdose EMS activations were higher than prepandemic levels. During the early pandemic period, percentages of total EMS activations increased for on-scene death (from 1.3% to 2.4% during weeks 11-15), cardiac arrest (from 1.3% to 2.2% during weeks 11-15), and opioid use/overdose (from 0.6% to 1.1% during weeks 8-18). The percentages then declined but remained above prepandemic levels through calendar week 52. CONCLUSIONS: The COVID-19 pandemic has indirect consequences, such as relative increases in EMS activations for cardiac events and opioid use/overdose, possibly linked to disruptions is healthcare access and health-seeking behaviors. Increasing telehealth visits and other opportunities for patient-provider touch points for chronic disease and substance use disorders that emphasize counseling, preventive care, and expanded access to medications can disrupt delayed care-seeking during the pandemic and potentially prevent premature death.


Assuntos
COVID-19 , Overdose de Drogas , Serviços Médicos de Emergência , Overdose de Drogas/tratamento farmacológico , Overdose de Drogas/epidemiologia , Humanos , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiologia
7.
Opt Express ; 29(23): 37759-37775, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808842

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.


Assuntos
Fluorescência , Microscopia de Fluorescência/métodos , Fótons , Algoritmos , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fluoresceína , Corantes Fluorescentes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/instrumentação , Modelos Animais , NADP/metabolismo , Radiometria/instrumentação , Radiometria/métodos , Ratos , Rodaminas , Fatores de Tempo
8.
Opt Lett ; 46(9): 2071-2074, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929421

RESUMO

Defocus aberration in optical systems, including optical coherence tomography (OCT) systems employing Gaussian illumination, gives rise to the well-known compromise between transverse resolution and depth-of-field. This results in blurry images when out-of-focus, whilst other low-order aberrations (e.g., astigmatism, coma, etc.) present in both the OCT system and biological samples further reduce image resolution and contrast. Computational adaptive optics (CAO) is a computed optical interferometric imaging technique that modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations and provide improvement of the image quality throughout the three-dimensional (3D) volume. In this Letter, we report the first implementation of CAO for polarization-sensitive OCT to correct defocus and other low-order aberrations, providing enhanced polarization-sensitive imaging contrast (i.e., intensity and phase retardation) on a 3D OCT phantom, molded plastics, ex vivo chicken breast tissue, and ex vivo human breast cancer tissue.


Assuntos
Tomografia de Coerência Óptica , Processamento de Imagem Assistida por Computador , Interferometria , Imagens de Fantasmas
9.
Artigo em Inglês | MEDLINE | ID: mdl-33746497

RESUMO

Intraoperative imaging in surgical oncology can provide information about the tumor microenvironment as well as information about the tumor margin. Visualizing microstructural features and molecular and functional dynamics may provide important diagnostic and prognostic information, especially when obtained in real-time at the point-of-procedure. A majority of current intraoperative optical techniques are based on the use of the labels, such as fluorescent dyes. However, these exogenous agents disrupt the natural microenvironment, perturb biological processes, and alter the endogenous optical signatures that cells and the microenvironment can provide. Portable nonlinear imaging systems have enabled intraoperative imaging for real-time detection and diagnosis of tissue. We review the development of a label-free multimodal nonlinear optical imaging technique that was adapted into a portable imaging system for intraoperative optical assessment of resected human breast tissue. New developments have applied this technology to assessing needle-biopsy specimens. Needle-biopsy procedures most always precede surgical resection and serve as the first sampling of suspicious masses for diagnosis. We demonstrate the diagnostic feasibility of imaging core needle-biopsy specimens during veterinary cancer surgeries. This intraoperative label-free multimodal nonlinear optical imaging technique can potentially provide a powerful tool to assist in cancer diagnosis at the point-of-procedure.

10.
J Phys D Appl Phys ; 54(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38222471

RESUMO

In this report, we report on the implementation of compressive sensing (CS) and sparse sampling in polarization sensitive optical coherence tomography (PS-OCT) to reduce the number of B-scans (frames consisting of an array of A-scans, where each represents a single depth profile of reflections) required for effective volumetric (3D dataset composed of an array of B-scans) PS-OCT measurements (i.e. OCT intensity, and phase retardation) reconstruction. Sparse sampling of PS-OCT is achieved through randomization of step sizes along the slow-axis of PS-OCT imaging, covering the same spatial ranges as those with equal slow-axis step sizes, but with a reduced number of B-scans. Tested on missing B-scan rates of 25%, 50% and 75%, we found CS could reconstruct reasonably good (as evidenced by a correlation coefficient >0.6) PS-OCT measurements with a maximum reduced B-scan rate of 50%, thereby accelerating and doubling the rate of volumetric PS-OCT measurements.

11.
Exp Dermatol ; 29(10): 953-960, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33311854

RESUMO

Minipig skin is one of the most widely used non-rodent animal skin models for dermatological research. A thorough characterization of minipig skin is essential for gaining deeper understanding of its structural and functional similarities with human skin. In this study, three-dimensional (3-D) in vivo images of minipig skin was obtained non-invasively using a multimodal optical imaging system capable of acquiring two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy (FLIM) images simultaneously. The images of the structural features of different layers of the minipig skin were qualitatively and quantitatively compared with those of human skin. Label-free imaging of skin was possible due to the endogenous fluorescence and optical properties of various components in the skin such as keratin, nicotinamide adenine dinucleotide phosphate (NAD(P)H), melanin, elastin, and collagen. This study demonstrates the capability of optical biopsy techniques, such as TPEF and FLIM, for in vivo non-invasive characterization of cellular and functional features of minipig skin, and the optical image-based similarities of this commonly utilized model of human skin. These optical imaging techniques have the potential to become promising tools in dermatological research for developing a better understanding of animal skin models, and for aiding in translational pre-clinical to clinical studies.


Assuntos
Dermatologia , Microscopia de Fluorescência por Excitação Multifotônica , Pele/anatomia & histologia , Pele/diagnóstico por imagem , Adulto , Idoso , Animais , Pesquisa Biomédica , Núcleo Celular , Citoplasma , Humanos , Imageamento Tridimensional , Microscopia Intravital , Masculino , Pessoa de Meia-Idade , Modelos Animais , Imagem Multimodal , Pele/metabolismo , Suínos
12.
Ear Hear ; 41(4): 811-824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31634213

RESUMO

OBJECTIVES: Wideband acoustic immittance (WAI) noninvasively assesses middle ear function by measuring the sound conduction over a range of audible frequencies. Although several studies have shown the potential of WAI for detecting the presence of middle ear effusions (MEEs), determining the effects of MEE type and amount on WAI in vivo has been challenging due to the anatomical location of middle ear cavity. The purpose of this study is to correlate WAI measurements with physical characteristics of the middle ear and MEEs determined by optical coherence tomography (OCT), a noninvasive optical imaging technique. DESIGN: Sixteen pediatric subjects (average age of 7 ± 4 years) were recruited from the primary care clinic at Carle Foundation Hospital (Urbana, IL). A total of 22 ears (normal: 15 ears, otitis media with effusion: 6 ears, and acute otitis media: 1 ear, based on physician's diagnosis) were examined via standard otoscopy, tympanometry, OCT imaging, and WAI measurements in a busy, community-based clinical setting. Cross-sectional OCT images were analyzed to quantitatively assess the presence, type (relative turbidity based on the amount of scattering), and amount (relative fluid level) of MEEs. These OCT metrics were utilized to categorize subject ears into no MEE (control), biofilm without a MEE, serous-scant, serous-severe, mucoid-scant, and mucoid-severe MEE groups. The absorbance levels in each group were statistically evaluated at α = 0.05. RESULTS: The absorbance of the control group showed a similar trend when compared with a pediatric normative dataset, and the presence of an MEE generally decreased the power absorbance. The mucoid MEE group showed significantly less power absorbance from 2.74 to 4.73 kHz (p < 0.05) when compared with the serous MEE group, possibly due to the greater mass impeding the middle ear system. Similarly, the greater amount of middle ear fluid contributed to the lower power absorbance from 1.92 to 2.37 kHz (p< 0.05), when compared with smaller amounts of fluid. As expected, the MEEs with scant fluid only significantly affected the power absorbance at frequencies greater than 4.85 kHz. A large variance in the power absorbance was observed between 2 and 5 kHz, suggesting the dependence on both the type and amount of MEE. CONCLUSIONS: Physical characteristics of the middle ear and MEEs quantified from noninvasive OCT images can be helpful to understand abnormal WAI measurements. Mucoid MEEs decrease the power absorbance more than serous MEEs, and the greater amounts of MEE decreases the power absorbance, especially at higher (>2 kHz) frequencies. As both the type and amount of MEE can significantly affect WAI measurements, further investigations to correlate acoustic measurements with physical characteristics of middle ear conditions in vivo is needed.


Assuntos
Otite Média com Derrame , Testes de Impedância Acústica , Acústica , Criança , Pré-Escolar , Estudos Transversais , Orelha Média/diagnóstico por imagem , Feminino , Humanos , Masculino , Otite Média com Derrame/diagnóstico por imagem , Tomografia de Coerência Óptica
13.
Nat Chem Biol ; 13(4): 415-424, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192414

RESUMO

Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne-doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.


Assuntos
Neoplasias da Mama/metabolismo , Carboidratos/análise , Carboidratos/química , Neoplasias do Colo/metabolismo , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias Experimentais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Carboidratos/síntese química , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/tratamento farmacológico , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/tratamento farmacológico , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Lasers Surg Med ; 49(3): 240-248, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319274

RESUMO

BACKGROUND AND OBJECTIVE: Sarcomas are rare but highly aggressive tumors, and local recurrence after surgical excision can occur in up to 50% cases. Therefore, there is a strong clinical need for accurate tissue differentiation and margin assessment to reduce incomplete resection and local recurrence. The purpose of this study was to investigate the use of optical coherence tomography (OCT) and a novel image texture-based processing algorithm to differentiate sarcoma from muscle and adipose tissue. STUDY DESIGN AND METHODS: In this study, tumor margin delineation in 19 feline and canine veterinary patients was achieved with intraoperative OCT to help validate tumor resection. While differentiation of lower-scattering adipose tissue from higher-scattering muscle and tumor tissue was relatively straightforward, it was more challenging to distinguish between dense highly scattering muscle and tumor tissue types based on scattering intensity and microstructural features alone. To improve tissue-type differentiation in a more objective and automated manner, three descriptive statistical metrics, namely the coefficient of variation (CV), standard deviation (STD), and Range, were implemented in a custom algorithm applied to the OCT images. RESULTS: Over 22,800 OCT images were collected intraoperatively from over 38 sites on 19 ex vivo tissue specimens removed during sarcoma surgeries. Following the generation of an initial set of OCT images correlated with standard hematoxylin and eosin-stained histopathology, over 760 images were subsequently used for automated analysis. Using texture-based image processing metrics, OCT images of sarcoma, muscle, and adipose tissue were all found to be statistically different from one another (P ≤ 0.001). CONCLUSION: These results demonstrate the potential of using intraoperative OCT, along with an automated tissue differentiation algorithm, as a guidance tool for soft tissue sarcoma margin delineation in the operating room. Lasers Surg. Med. 49:240-248, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Monitorização Intraoperatória/métodos , Neoplasias Musculares/patologia , Neoplasias Lipomatosas/diagnóstico por imagem , Sarcoma/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Animais , Biópsia por Agulha , Gatos , Diagnóstico Diferencial , Cães , Imuno-Histoquímica , Margens de Excisão , Neoplasias Musculares/diagnóstico por imagem , Neoplasias Musculares/cirurgia , Neoplasias Musculares/veterinária , Neoplasias Lipomatosas/patologia , Neoplasias Lipomatosas/cirurgia , Neoplasias Lipomatosas/veterinária , Sarcoma/patologia , Sarcoma/cirurgia , Sarcoma/veterinária
15.
Exp Dermatol ; 25(5): 362-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26739196

RESUMO

Topical steroids are known for their anti-inflammatory properties and are commonly prescribed to treat many adverse skin conditions such as eczema and psoriasis. While these treatments are known to be effective, adverse effects including skin atrophy are common. In this study, the progression of these effects is investigated in an in vivo mouse model using multimodal optical microscopy. Utilizing a system capable of performing two-photon excitation fluorescence microscopy (TPEF) of reduced nicotinamide adenine dinucleotide (NADH) to visualize the epidermal cell layers and second harmonic generation (SHG) microscopy to identify collagen in the dermis, these processes can be studied at the cellular level. Fluorescence lifetime imaging microscopy (FLIM) is also utilized to image intracellular NADH levels to obtain molecular information regarding metabolic activity following steroid treatment. In this study, fluticasone propionate (FP)-treated, mometasone furoate (MF)-treated and untreated animals were imaged longitudinally using a custom-built multimodal optical microscope. Prolonged steroid treatment over the course of 21 days is shown to result in a significant increase in mean fluorescence lifetime of NADH, suggesting a faster rate of maturation of epidermal keratinocytes. Alterations to collagen organization and the structural microenvironment are also observed. These results give insight into the structural and biochemical processes of skin atrophy associated with prolonged steroid treatment.


Assuntos
Anti-Inflamatórios/efeitos adversos , Fluticasona/efeitos adversos , Furoato de Mometasona/efeitos adversos , Microscopia de Geração do Segundo Harmônico , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Anti-Inflamatórios/administração & dosagem , Colágeno/análise , Colágeno/metabolismo , Fluticasona/administração & dosagem , Camundongos Pelados , Microscopia de Fluorescência , Furoato de Mometasona/administração & dosagem , NAD/análise , NAD/metabolismo , Pele/metabolismo
16.
BMC Cancer ; 16: 144, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26907742

RESUMO

BACKGROUND: Evaluation of lymph node (LN) status is an important factor for detecting metastasis and thereby staging breast cancer. Currently utilized clinical techniques involve the surgical disruption and resection of lymphatic structure, whether nodes or axillary contents, for histological examination. While reasonably effective at detection of macrometastasis, the majority of the resected lymph nodes are histologically negative. Improvements need to be made to better detect micrometastasis, minimize or eliminate lymphatic disruption complications, and provide immediate and accurate intraoperative feedback for in vivo cancer staging to better guide surgery. METHODS: We evaluated the use of optical coherence tomography (OCT), a high-resolution, real-time, label-free imaging modality for the intraoperative assessment of human LNs for metastatic disease in patients with breast cancer. We assessed the sensitivity and specificity of double-blinded trained readers who analyzed intraoperative OCT LN images for presence of metastatic disease, using co-registered post-operative histopathology as the gold standard. RESULTS: Our results suggest that intraoperative OCT examination of LNs is an appropriate real-time, label-free, non-destructive alternative to frozen-section analysis, potentially offering faster interpretation and results to empower superior intraoperative decision-making. CONCLUSIONS: Intraoperative OCT has strong potential to supplement current post-operative histopathology with real-time in situ assessment of LNs to preserve both non-cancerous nodes and their lymphatic vessels, and thus reduce the associated risks and complications from surgical disruption of lymphoid structures following biopsy.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Metástase Linfática/diagnóstico , Tomografia de Coerência Óptica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Feminino , Humanos , Período Intraoperatório , Linfonodos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Sensibilidade e Especificidade
17.
Proc Natl Acad Sci U S A ; 109(24): 9529-34, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645342

RESUMO

Otitis media (OM), a middle-ear infection, is the most common childhood illness treated by pediatricians. If inadequately treated, OM can result in long-term chronic problems persisting into adulthood. Children with chronic OM or recurrent OM often have conductive hearing loss and communication difficulties and require surgical treatment. Tympanostomy tube insertion, the placement of a small drainage tube in the tympanic membrane (TM), is the most common surgical procedure performed in children under general anesthesia. Recent clinical studies have shown evidence of a direct correspondence between chronic OM and the presence of a bacterial biofilm within the middle ear. Biofilms are typically very thin and cannot be recognized using a regular otoscope. Here we report the use of optical coherent ranging techniques to noninvasively assess the middle ear to detect and quantify biofilm microstructure. This study involves adults with chronic OM, which is generally accepted as a biofilm-related disease. Based on more than 18,537 optical ranging scans and 742 images from 13 clinically infected patients and 7 normal controls using clinical findings as the gold standard, all middle ears with chronic OM showed evidence of biofilms, and all normal ears did not. Information on the presence of a biofilm, along with its structure and response to antibiotic treatment, will not only provide a better fundamental understanding of biofilm formation, growth, and eradication in the middle ear, but also may provide much-needed quantifiable data to enable early detection and quantitative longitudinal treatment monitoring of middle-ear biofilms responsible for chronic OM.


Assuntos
Biofilmes , Orelha Média/metabolismo , Humanos , Tomografia de Coerência Óptica
18.
Opt Express ; 22(19): 22547-60, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321724

RESUMO

High-resolution imaging in turbid media has been limited by the intrinsic compromise between the gating efficiency (removal of multiply-scattered light background) and signal strength in the existing optical gating techniques. This leads to shallow depths due to the weak ballistic signal, and/or degraded resolution due to the strong multiply-scattering background--the well-known trade-off between resolution and imaging depth in scattering samples. In this work, we employ a nonlinear optics based optical parametric amplifier (OPA) to address this challenge. We demonstrate that both the imaging depth and the spatial resolution in turbid media can be enhanced simultaneously by the OPA, which provides a high level of signal gain as well as an inherent nonlinear optical gate. This technology shifts the nonlinear interaction to an optical crystal placed in the detection arm (image plane), rather than in the sample, which can be used to exploit the benefits given by the high-order parametric process and the use of an intense laser field. The coherent process makes the OPA potentially useful as a general-purpose optical amplifier applicable to a wide range of optical imaging techniques.


Assuntos
Diagnóstico por Imagem/instrumentação , Luz , Microscopia/instrumentação , Nefelometria e Turbidimetria/instrumentação , Óptica e Fotônica , Espalhamento de Radiação , Tomografia de Coerência Óptica/instrumentação , Humanos
19.
J Biomed Opt ; 29(Suppl 2): S22704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584966

RESUMO

Significance: Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast. Aim: We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts. Approach: BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast. Results: BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors. Conclusions: BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Animais , Microscopia/métodos , Tomografia de Coerência Óptica/métodos , Microscopia de Contraste de Fase
20.
Sci Rep ; 14(1): 5528, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448508

RESUMO

Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , NAD , Biópsia , Mama , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA