Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091469

RESUMO

Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.


Assuntos
Longevidade/genética , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Histona Desacetilases/economia , Histona Desacetilases/metabolismo , Masculino , Sirtuínas/genética
2.
Metab Brain Dis ; 38(4): 1249-1259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662413

RESUMO

Vagus nerve stimulation through the action of acetylcholine can modulate inflammatory responses and metabolism. α7 Nicotinic Acetylcholine Receptor (α7nAChR) is a key component in the biological functions of acetylcholine. To further explore the health benefits of vagus nerve stimulation, this study aimed to investigate whether α7nAChR agonists offer beneficial effects against poststroke inflammatory and metabolic changes and to identify the underlying mechanisms in a rat model of stroke established by permanent cerebral ischemia. We found evidence showing that pretreatment with α7nAChR agonist, GTS-21, improved poststroke brain infarction size, impaired motor coordination, brain apoptotic caspase 3 activation, dysregulated glucose metabolism, and glutathione reduction. In ischemic cortical tissues and gastrocnemius muscles with GTS-21 pretreatment, macrophages/microglia M1 polarization-associated Tumor Necrosis Factor-α (TNF-α) mRNA, Cluster of Differentiation 68 (CD68) protein, and Inducible Nitric Oxide Synthase (iNOS) protein expression were reduced, while expression of anti-inflammatory cytokine IL-4 mRNA, and levels of M2 polarization-associated CD163 mRNA and protein were increased. In the gastrocnemius muscles, stroke rats showed a reduction in both glutathione content and Akt Serine 473 phosphorylation, as well as an elevation in Insulin Receptor Substrate-1 Serine 307 phosphorylation and Dynamin-Related Protein 1 Serine 616 phosphorylation. GTS-21 reversed poststroke changes in the gastrocnemius muscles. Overall, our findings, provide further evidence supporting the neuroprotective benefits of α7nAChR agonists, and indicate that they may potentially exert anti-inflammatory and metabolic effects peripherally in the skeletal muscle in an acute ischemic stroke animal model.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina , Glucose
3.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012397

RESUMO

Metformin may offer benefits to certain cancer populations experiencing metabolic abnormalities. To extend the anticancer studies of metformin, a tumor model was established through the implantation of murine Lewis Lung Carcinoma (LLC) cells to Normal Diet (ND)-fed and High-Fat Diet (HFD)-fed C57BL/6 mice. The HFD-fed mice displayed metabolic and pro-inflammatory alterations together with accompanying aggressive tumor growth. Metformin mitigated tumor growth in HFD-fed mice, paralleled by reductions in circulating glucose, insulin, soluble P-selectin, TGF-ß1 and High Mobility Group Box-1 (HMGB1), as well as tumor expression of cell proliferation, aerobic glycolysis, glutaminolysis, platelets and neutrophils molecules. The suppressive effects of metformin on cell proliferation, migration and oncogenic signaling molecules were confirmed in cell study. Moreover, tumor-bearing HFD-fed mice had higher contents of circulating and tumor immunopositivity of Neutrophil Extracellular Traps (NETs)-associated molecules, with a suppressive effect from metformin. Data taken from neutrophil studies confirmed the inhibitory effect that metformin has on NET formation induced by HMGB1. Furthermore, HMGB1 was identified as a promoting molecule to boost the transition process towards NETs. The current study shows that metabolic, pro-inflammatory and NET alterations appear to play roles in the obesity-driven aggressiveness of cancer, while also representing candidate targets for anticancer potential of metformin.


Assuntos
Proteína HMGB1 , Metformina , Neoplasias , Animais , Dieta Hiperlipídica/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/patologia
4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054765

RESUMO

Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.


Assuntos
Apoptose , Autofagia , Dipiridamol/farmacologia , Estresse do Retículo Endoplasmático , Glioblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
5.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806200

RESUMO

Spinal microglia are crucial to neuronal hyper-excitability and pain hypersensitivity. The local anesthetic bupivacaine is commonly used for both peripheral and spinal anesthesia. The pain-relief effects resulting from the peripheral and systemic administration of bupivacaine have been previously reported. In this study, the preventive effects of intrathecal bupivacaine administration against neuropathic pain were revealed in a rat model of sciatic nerve chronic constriction injury (CCI). Using a CCI rat model, pain hypersensitivity, characterized by mechanical allodynia and thermal hyperalgesia, correlated well with microglia M1 polarization, activation and pro-inflammatory cytokine expression in both spinal cord dorsal horns and sciatic nerves. Bupivacaine attenuated pain behaviors and inflammatory alternations. We further identified that the Interferon Regulatory Factor 5 (IRF5)/P2X Purinoceptor 4 (P2X4R) and High Mobility Group Box 1 (HMGB1)/Toll-Like Receptor 4 (TLR4)/NF-κB inflammatory axes may each play pivotal roles in the acquisition of microglia M1 polarization and pro-inflammatory cytokine expression under CCI insult. The relief of pain paralleled with the suppression of microglia M1 polarization, elevation of microglia M2 polarization, and inhibition of IRF5/P2X4R and HMGB1/TLR4/NF-κB in both the spinal cord dorsal horns and sciatic nerve. Our findings provide molecular and biochemical evidence for the anti-neuropathic effect of preventive bupivacaine.


Assuntos
Lesões por Esmagamento , Proteína HMGB1 , Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Bupivacaína/farmacologia , Constrição , Lesões por Esmagamento/metabolismo , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Injeções Espinhais , Fatores Reguladores de Interferon/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Neuropatia Ciática/metabolismo , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Brain Behav Immun ; 93: 194-205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486004

RESUMO

Japanese Encephalitis Virus (JEV) is a neurotropic virus and its Central Nervous System (CNS) infection causes fatal encephalitis with high mortality and morbidity. Microglial activation and consequences of bystander damage appear to be the dominant mechanisms for Japanese Encephalitis and complications. Docosahexaenoic acid (DHA), an essential fatty acid and a major component of brain cell membranes, possesses additional biological activities, including anti-apoptosis, anti-inflammation, and neuroprotection. Through this study, we have provided experimental evidence showing the anti-inflammatory, neuroprotective, and anti-viral effects of DHA against JEV infection in rat Neuron/glia cultures. By Neuron/glia and Neuron cultures, DHA protected against neuronal cell death upon JEV infection and reduced JEV amplification. In Neuron/glia and Microglia cultures, the effects of DHA were accompanied by the downregulation of pro-inflammatory M1 microglia, upregulation of anti-inflammatory M2 microglia, and reduction of neurotoxic cytokine expression, which could be attributed to its interference in the Toll-Like Receptor (TLR), Mitogen-Activated Protein Kinase (MAPK), and Interferon/Janus Kinase/Signal Transducers and Activators of Transcription (Stat), along with the NF-κB, AP-1, and c-AMP Response Element Binding Protein (CREB) controlled transcriptional programs. Parallel anti-inflammatory effects against JEV infection were duplicated by G Protein-Coupled Receptor (GPR120) and GPR40 agonists and a reversal of DHA-mediated anti-inflammation was seen in the presence of GPR120 antagonist, while the GPR40 was less effectiveness. Since increasing evidence indicates its neuroprotection against neurodegenerative diseases, DHA is a proposed anti-inflammatory and neuroprotective candidate for the treatment of neuroinflammation-accompanied viral pathogenesis such as Japanese Encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Morte Celular , Células Cultivadas , Ácidos Docosa-Hexaenoicos/farmacologia , Microglia , Neuroglia , Neurônios , Ratos
7.
Int J Mol Sci ; 22(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920356

RESUMO

Adequate stress on the Endoplasmic Reticulum (ER) with the Unfolded Protein Response (UPR) could maintain glioma malignancy. Uncontrolled ER stress, on the other hand, predisposes an apoptosis-dominant UPR program. We studied here the proapoptotic actions of the Epidermal Growth Factor Receptor (EGFR) inhibitor gefitinib, with the focus on ER stress. The study models were human H4 and U87 glioma cell lines. We found that the glioma cell-killing effects of gefitinib involved caspase 3 apoptotic cascades. Three branches of ER stress, namely Activating Transcription Factor-6 (ATF6), Protein Kinase R (PKR)-Like ER Kinase (PERK), and Inositol-Requiring Enzyme 1 (IRE1), were activated by gefitinib, along with the elevation of intracellular free Ca2+, Reactive Oxygen Species (ROS), and NADPH Oxidase2/4 (NOX2/4). Specifically, elevated IRE1 phosphorylation, Tumor Necrosis Factor (TNF) Receptor-Associated Factor-2 (TRAF2) expression, Apoptosis Signal-Regulating Kinase-1 (Ask1) phosphorylation, c-Jun N-Terminal Kinase (JNK) phosphorylation, and Noxa expression appeared in gefitinib-treated glioma cells. Genetic, pharmacological, and biochemical studies further indicated an active ROS/ER stress/Ask1/JNK/Noxa axis causing the glioma apoptosis induced by gefitinib. The findings suggest that ER-stress-based therapeutic targeting could be a promising option in EGFR inhibitor glioma therapy, and may ultimately achieve a better patient response.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Gefitinibe/farmacologia , Glioma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/metabolismo , Glioma/patologia , Humanos , Proteínas de Neoplasias/metabolismo
8.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545774

RESUMO

Clinically, high cyclooxygenase-2 expression in malignant glioma correlates well with poor prognosis and the use of aspirin is associated with a reduced risk of glioma. To extend the current understanding of the apoptotic potential of aspirin in most cell types, this study provides evidence showing that aspirin induced glioma cell apoptosis and inhibited tumor growth, in vitro and in vivo. We found that the human H4 glioma cell-killing effects of aspirin involved mitochondria-mediated apoptosis accompanied by endoplasmic reticulum (ER) stress, Noxa upregulation, Mcl-1 downregulation, Bax mitochondrial distribution and oligomerization, and caspase 3/caspase 8/caspase 9 activation. Genetic silencing of Noxa or Bax attenuated aspirin-induced viability loss and apoptosis, while silencing Mcl-1 augmented the effects of aspirin. Data from genetic and pharmacological studies revealed that the axis of ER stress comprised an apoptotic cascade leading to Noxa upregulation and apoptosis. The apoptotic programs and mediators triggered by aspirin in H4 cells were duplicated in human U87 glioma cell line as well as in tumor-bearing BALB/c nude mice. The involvement of ER stress in indomethacin-induced Mcl-1 downregulation was reported in our previous study on glioma cells. Therefore, the aforementioned phenomena indicate that ER stress may be a valuable target for intervention in glioma apoptosis.


Assuntos
Aspirina/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Regulação para Cima , Animais , Aspirina/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952288

RESUMO

The dormancy of cellular apoptotic machinery has been highlighted as a crucial factor in therapeutic resistance, recurrence, and poor prognosis in patients with malignancy, such as malignant glioma. Increasing evidence indicates that nonsteroidal anti-inflammatory drugs (NSAIDs) confer chemopreventive effects, and indomethacin has been shown to have a novel chemotherapeutic application targeting glioma cells. To extend these findings, herein, we studied the underlying mechanisms of apoptosis activation caused by indomethacin in human H4 and U87 glioma cells. We found that the glioma cell-killing effects of indomethacin involved both death receptor- and mitochondria-mediated apoptotic cascades. Indomethacin-induced glioma cell apoptosis was accompanied by a series of biochemical changes, including reactive oxygen species generation, endoplasmic reticulum (ER) stress, apoptosis signal-regulating kinase-1 (Ask1) activation, p38 hyperphosphorylation, protein phosphatase 2A (PP2A) activation, Akt dephosphorylation, Mcl-1 and FLICE-inhibiting protein (FLIP) downregulation, Bax mitochondrial distribution, and caspases 3/caspase 8/caspase 9 activation. Data on pharmacological inhibition related to oxidative stress, ER stress, free Ca2+, and p38 revealed that the axis of oxidative stress/ER stress/Ask1/p38/PP2A/Akt comprised an apoptotic cascade leading to Mcl-1/FLIP downregulation and glioma apoptosis. Since indomethacin is an emerging choice in chemotherapy and its antineoplastic effects have been demonstrated in glioma tumor-bearing models, the findings further strengthen the argument for turning on the aforementioned axis in order to activate the apoptotic machinery of glioma cells.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/metabolismo , Indometacina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Glioma/patologia , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Fosfatase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485857

RESUMO

Chronic treatment involving opioids exacerbates both the risk and severity of ischemic stroke. We have provided experimental evidence showing the anti-inflammatory and neuroprotective effects of the µ opioid receptor antagonist ß-funaltrexamine for neurodegenerative diseases in rat neuron/glia cultures and a rat model of cerebral Ischemia/Reperfusion (I/R) injury. Independent of in vitro Lipopolysaccharide (LPS)/interferon (IFN-γ)-stimulated neuron/glia cultures and in vivo cerebral I/R injury in Sprague-Dawley rats, ß-funaltrexamine downregulated neuroinflammation and ameliorated neuronal degeneration. Alterations in microglia polarization favoring the classical activation state occurred in LPS/IFN-γ-stimulated neuron/glia cultures and cerebral I/R-injured cortical brains. ß-funaltrexamine shifted the polarization of microglia towards the anti-inflammatory phenotype, as evidenced by decreased nitric oxide, tumor necrosis factor-α, interleukin-1ß, and prostaglandin E2, along with increased CD163 and arginase 1. Mechanistic studies showed that the suppression of microglia pro-inflammatory polarization by ß-funaltrexamine was accompanied by the reduction of NF-κB, AP-1, cyclic AMP response element-binding protein, along with signal transducers and activators of transcription transcriptional activities and associated upstream activators. The effects of ß-funaltrexamine are closely linked with its action on neuroinflammation by switching microglia polarization from pro-inflammatory towards anti-inflammatory phenotypes. These findings provide new insights into the anti-inflammatory and neuroprotective mechanisms of ß-funaltrexamine in combating neurodegenerative diseases, such as stroke.


Assuntos
Anti-Inflamatórios/uso terapêutico , Naltrexona/análogos & derivados , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Arginase/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , NF-kappa B/metabolismo , Naltrexona/farmacologia , Naltrexona/uso terapêutico , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Exp Cell Res ; 365(1): 66-77, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29470962

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are increasingly implicated in the prevention and treatment of cancers apart from their known inhibitory effects on eicosanoid production. One of the NSAIDs, indomethacin, in particular shows promising antineoplastic outcome against glioma. To extend such finding, we here studied in human H4 and U87 glioma cells the possible involvement of the ceramide/protein phosphatase 2 A (PP2A)/Akt axis in the indomethacin-induced apoptosis. We found that the induced apoptosis was accompanied by a series of biochemical events, including intracellular ceramide generation, PP2A activation, Akt dephosphorylation, Mcl-1 and FLICE inhibiting protein (FLIP) transcriptional downregulation, Bax mitochondrial distribution, and caspase 3 activation. Such events were also duplicated with a cell-permeable C2-ceramide and Akt inhibitor LY294002. Pharmacological inhibition of ceramide synthase by fumonisin B1 and PP2A by okadaic acid moderately attenuated indomethacin-induced Akt dephosphorylation along with the apoptosis. Results suggested that the ceramide/PP2A/Akt axis is involved in the apoptosis and a possible cyclooxygenase-independent target for indomethacin. Furthermore, apoptosis regulatory proteins such as Mcl-1 and FLIP are potential downstream effectors of this axis and their downregulation could turn on the apoptotic program.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Glioma/tratamento farmacológico , Indometacina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(40): 11277-11282, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621458

RESUMO

Transposable elements (TEs) are mobile genetic elements, highly enriched in heterochromatin, that constitute a large percentage of the DNA content of eukaryotic genomes. Aging in Drosophila melanogaster is characterized by loss of repressive heterochromatin structure and loss of silencing of reporter genes in constitutive heterochromatin regions. Using next-generation sequencing, we found that transcripts of many genes native to heterochromatic regions and TEs increased with age in fly heads and fat bodies. A dietary restriction regimen, known to extend life span, repressed the age-related increased expression of genes located in heterochromatin, as well as TEs. We also observed a corresponding age-associated increase in TE transposition in fly fat body cells that was delayed by dietary restriction. Furthermore, we found that manipulating genes known to affect heterochromatin structure, including overexpression of Sir2, Su(var)3-9, and Dicer-2, as well as decreased expression of Adar, mitigated age-related increases in expression of TEs. Increasing expression of either Su(var)3-9 or Dicer-2 also led to an increase in life span. Mutation of Dicer-2 led to an increase in DNA double-strand breaks. Treatment with the reverse transcriptase inhibitor 3TC resulted in decreased TE transposition as well as increased life span in TE-sensitized Dicer-2 mutants. Together, these data support the retrotransposon theory of aging, which hypothesizes that epigenetically silenced TEs become deleteriously activated as cellular defense and surveillance mechanisms break down with age. Furthermore, interventions that maintain repressive heterochromatin and preserve TE silencing may prove key to preventing damage caused by TE activation and extending healthy life span.


Assuntos
Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Longevidade/genética , Animais , Restrição Calórica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genótipo , Heterocromatina/metabolismo , Lamivudina/farmacologia , RNA Helicases/genética , RNA Helicases/metabolismo , Retroelementos/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regulação para Cima/genética
14.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181623

RESUMO

The prognostic and therapeutic values of fibronectin have been reported in patients with renal cell carcinoma (RCC). However, the underlying mechanisms of malignancy in RCC are not completely understood. We found that silencing of fibronectin expression attenuated human RCC 786-O and Caki-1 cell growth and migration. Silencing of potential fibronectin receptor integrin α5 and integrin ß1 decreased 786-O cell ability in movement and chemotactic migration. Biochemical examination revealed a reduction of cyclin D1 and vimentin expression, transforming growth factor-ß1 (TGF-ß1) production, as well as Src and Smad phosphorylation in fibronectin-silenced 786-O and Caki-1 cells. Pharmacological inhibition of Src decreased 786-O cell growth and migration accompanied by a reduction of cyclin D1, fibronectin, vimentin, and TGF-ß1 expression, as well as Src and Smad phosphorylation. In 786-O cells, higher activities in cell growth and migration than in Caki-1 cells were noted, along with elevated fibronectin and TGF-ß1 expression. The additions of exogenous fibronectin and TGF-ß1 promoted Caki-1 cell growth and migration, and increased cyclin D1, fibronectin, vimentin, and TGF-ß1 expression, as well as Src and Smad phosphorylation. These findings highlight the role of fibronectin in RCC cell growth and migration involving Src and TGF-ß1 signaling.


Assuntos
Carcinoma de Células Renais/metabolismo , Movimento Celular , Proliferação de Células , Fibronectinas/metabolismo , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Fibronectinas/genética , Humanos , Integrina alfa5/genética , Integrina alfa5/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Vimentina/genética , Vimentina/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
15.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469316

RESUMO

Microglia polarization of classical activation state is crucial to the induction of neuroinflammation, and has been implicated in the pathogenesis of numerous neurodegenerative diseases. Fungal immunomodulatory proteins are emerging health-promoting natural substances with multiple pharmacological activities, including immunomodulation. Herein, we investigated the anti-inflammatory and neuroprotective potential of fungal immunomodulatory protein extracted from Ganoderma microsporum (GMI) in an in vitro rodent model of primary cultures. Using primary neuron/glia cultures consisting of neurons, astrocytes, and microglia, a GMI showed an alleviating effect on lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-induced inflammatory mediator production and neuronal cell death. The events of neuroprotection caused by GMI were accompanied by the suppression of Nitric Oxide (NO), Tumor Necrosis Factor-α (TNF-α), Interleukin-1ß (IL-1ß), and Prostaglandin E2 (PGE2) production, along with the inhibition of microglia activation. Mechanistic studies showed that the suppression of microglia pro-inflammatory polarization by GMI was accompanied by the resolution of oxidative stress, the preservation of protein tyrosine phosphatase and serine/threonine phosphatase activity, and the reduction of NF-κB, AP-1, cyclic AMP response element-binding protein (CREB), along with signal transducers and activators of transcription (Stat1) transcriptional activities and associated upstream activators. These findings suggest that GMI may have considerable potential towards the treatment of neuroinflammation-mediated neurodegenerative diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas Fúngicas/farmacologia , Ganoderma/química , Fármacos Neuroprotetores/farmacologia , Animais , Células Cultivadas , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
16.
IUBMB Life ; 69(2): 79-87, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111888

RESUMO

Japanese encephalitis is a mosquito-borne disease caused by Japanese encephalitis virus (JEV) infection. Although JEV infects and replicates in cells with multiple tissue origins, neurons are the preferential cells for JEV infection. Currently, the identities of JEV cell tropism are largely unclear. To gain better insight into the underlying identities of JEV cell tropism, this study was designed to compare the JEV cell tropism with naïve or differentiated PC12 cells. Through nerve growth factor-differentiated PC12 cells, we discovered that JEV efficiently replicated in differentiated PC12 cells rather than naïve cells. Mechanistic studies revealed that viral adsorption/attachment seemed not to be a crucial factor. Supporting data showed that antagonizing postreceptor intracellular signaling of interferons, along with the activation of suppressor of cytokine signaling-3 (SOCS3) expression and protein tyrosine phosphatase activity, were apparent in differentiated PC12 cells after JEV infection. Independent of differentiating inducing agents, the upregulation of SOCS3 expression and protein tyrosine phosphatase activity, as well as preferential JEV tropism, were common in JEV-infected differentiated PC12 cells. Using cultured primary neurons, JEV efficiently replicated in embryonic neurons rather than adult neurons, and the preference was accompanied by higher SOCS3 expression and protein tyrosine phosphatase activity. Given that both SOCS3 and protein tyrosine phosphatases have been implicated in the process of neuronal differentiation, JEV infection seems to not only create an antagonizing strategy to escape host's interferon antiviral response but also takes advantage of cellular machinery to favor its replication. Taken together, current findings imply that dynamic changes within cellular regulators of antiviral machinery could be accompanied by events of neuronal differentiation, thus concurrently playing roles in the control of JEV cell tropism and replication. © 2017 IUBMB Life, 69(2):79-87, 2017.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/virologia , Proteínas Tirosina Fosfatases/biossíntese , Proteína 3 Supressora da Sinalização de Citocinas/biossíntese , Replicação Viral/genética , Animais , Antivirais/administração & dosagem , Diferenciação Celular/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/genética , Encefalite Japonesa/patologia , Regulação da Expressão Gênica/genética , Humanos , Neurônios/patologia , Neurônios/virologia , Células PC12 , Ratos , Transdução de Sinais/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tropismo Viral/genética
17.
Brain Behav Immun ; 66: 230-243, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28690034

RESUMO

Neuroinflammation is a pathological hallmark and has been implicated in the pathogenesis of Japanese encephalitis. Although brain pericytes show regulatory effects on neuroinflammation, their involvement in Japanese encephalitis-associated neuroinflammation is not understood. Here, we demonstrated that brain microvascular pericytes could be an alternative cellular source for the induction and/or amplification of neuroinflammation caused by Japanese encephalitis virus (JEV) infection. Infection of cultured pericytes with JEV caused profound production of IL-6, RANTES, and prostaglandin E2 (PGE2). Mechanistic studies revealed that JEV infection elicited an elevation of the toll-like receptor 7 (TLR7)/MyD88 signaling axis, leading to the activation of NF-κB through IKK signaling and p65 phosphorylation as well as cAMP response element-binding protein (CREB) via phosphorylation. We further demonstrated that extracellular signal-regulated kinase (ERK) could be an alternative regulator in transducing signals to NF-κB, CREB, and cytosolic phospholipase A2 (cPLA2) through the phosphorylation mechanism. Released IL-6 and RANTES played an active role in the disruption of endothelial barrier integrity and leukocyte chemotaxis, respectively. cPLA2/PGE2 had a role in activating NF-κB and CREB DNA-binding activities and inflammatory cytokine transcription via the EP2/cAMP/PKA mechanism in an autocrine loop. These inflammatory responses and biochemical events were also detected in the brain of JEV-infected mice. The current findings suggest that pericytes might have pathological relevance in Japanese encephalitis-associated neuroinflammation through a TLR7-related mechanism. The consequences of pericyte activation are their ability to initiate and/or amplify inflammatory cytokine expression by which cellular function of endothelial cells and leukocytes are regulated in favor of CNS infiltration by leukocytes.


Assuntos
Encefalite Japonesa/genética , Encefalite Japonesa/metabolismo , Expressão Gênica , Mediadores da Inflamação/metabolismo , Pericitos/metabolismo , Pericitos/virologia , Animais , Linhagem Celular , Citocinas/metabolismo , Vírus da Encefalite Japonesa (Espécie) , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Regulação para Cima
18.
Glia ; 63(11): 1915-1932, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25959931

RESUMO

Blood-brain barrier (BBB) characteristics are induced and maintained by crosstalk between brain microvascular endothelial cells and neighboring cells. Using in vitro cell models, we previously found that a bystander effect was a cause for Japanese encephalitis-associated endothelial barrier disruption. Brain astrocytes, which neighbor BBB endothelial cells, play roles in the maintenance of BBB integrity. By extending the scope of relevant studies, a potential mechanism has been shown that the activation of neighboring astrocytes could be a cause of disruption of endothelial barrier integrity during the course of Japanese encephalitis viral (JEV) infection. JEV-infected astrocytes were found to release biologically active molecules that activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1) and claudin-5, and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. JEV infection caused astrocytes to release vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and matrix metalloproteinases (MMP-2/MMP-9). Our data demonstrated that VEGF and IL-6 released by JEV-infected astrocytes were critical for the proteasomal degradation of ZO-1 and the accompanying disruption of endothelial barrier integrity through the activation of Janus kinase-2 (Jak2)/signal transducer and activator of transcription-3 (STAT3) signaling as well as the induction of ubiquitin-protein ligase E3 component, n-recognin-1 (Ubr 1) in endothelial cells. MMP-induced endothelial barrier disruption was accompanied by MMP-mediated proteolytic degradation of claudin-5 and ubiquitin proteasome-mediated degradation of ZO-1 via extracellular VEGF release. Collectively, these data suggest that JEV infection could activate astrocytes and cause release of VEGF, IL-6, and MMP-2/MMP-9, thereby contributing, in a concerted action, to the induction of Japanese encephalitis-associated BBB breakdown. GLIA 2015;63:1915-1932.

19.
Biochem Biophys Res Commun ; 463(3): 421-7, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26043690

RESUMO

Experimental studies have demonstrated the beneficial effects of tetramethylpyrazine (TMP) against ischemic stroke and highlighted its crucial role in anti-inflammatory activity. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its anti-inflammatory action against ischemic brain injury. We report a global inhibitory effect of TMP on inflammatory cell intracerebral activation and infiltration in a rat model of permanent cerebral ischemia. The results of immunohistochemistry, enzymatic assay, flow cytometric analysis, and cytological analysis revealed that intraperitoneal TMP administration reduced neuronal loss, macrophage/microglia activation, brain parenchyma infiltrative neutrophils, and circulating neutrophils after cerebral ischemia. Biochemical studies of cultured neutrophils further demonstrated that TMP attenuated neutrophil migration, endothelium adhesion, spontaneous nitric oxide (NO) production, and stimuli-activated NO production after cerebral ischemia. In parallel with these anti-neutrophil phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules, including plasma high-mobility group box-1 protein (HMGB1) and neutrophil toll-like receptor-4 (TLR4), Akt, extracellular signal-regulated kinase (ERK), and inducible nitric oxide synthase. Another finding in this study was that the anti-neutrophil effect of TMP was accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in neutrophils after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous anti-inflammatory defense capacity and the attenuation of pro-inflammatory responses via targeting of circulating neutrophils by elevating Nrf2/HO-1 expression and inhibiting HMGB1/TLR4, Akt, and ERK signaling might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Ativação de Neutrófilo/efeitos dos fármacos , Pirazinas/uso terapêutico , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
J Virol ; 88(2): 1150-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198423

RESUMO

Though the compromised blood-brain barrier (BBB) is a pathological hallmark of Japanese encephalitis-associated neurological sequelae, the underlying mechanisms and the specific cell types involved are not understood. BBB characteristics are induced and maintained by cross talk between brain microvascular endothelial cells and neighboring elements of the neurovascular unit. In this study, we show a potential mechanism of disruption of endothelial barrier integrity during the course of Japanese encephalitis virus (JEV) infection through the activation of neighboring pericytes. We found that cultured brain pericytes were susceptible to JEV infection but were without signs of remarkable cytotoxicity. JEV-infected pericytes were found to release biologically active molecules which activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1), and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. Infection of pericytes with JEV was found to elicit elevated production of interleukin-6 (IL-6), which contributed to the aforementioned endothelial changes. We further demonstrated that ubiquitin-protein ligase E3 component n-recognin-1 (Ubr 1) was a key upstream regulator which caused proteasomal degradation of ZO-1 downstream of IL-6 signaling. During JEV central nervous system trafficking, endothelial cells rather than pericytes are directly exposed to cell-free viruses in the peripheral bloodstream. Therefore, the results of this study suggest that subsequent to primary infection of endothelial cells, JEV infection of pericytes might contribute to the initiation and/or augmentation of Japanese encephalitis-associated BBB breakdown in concerted action with other unidentified barrier disrupting factors.


Assuntos
Barreira Hematoencefálica/virologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Células Endoteliais/virologia , Pericitos/virologia , Animais , Encefalite Japonesa/genética , Encefalite Japonesa/metabolismo , Células Endoteliais/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Pericitos/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA