Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(2): 1089-1100, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31884787

RESUMO

Biomolecules that respond to different external stimuli enable the remote control of genetically modified cells. We report herein a sonogenetic approach that can manipulate target cell activities by focused ultrasound stimulation. This system requires an ultrasound-responsive protein derived from an engineered auditory-sensing protein prestin. Heterologous expression of mouse prestin containing two parallel amino acid substitutions, N7T and N308S, that frequently exist in prestins from echolocating species endowed transfected mammalian cells with the ability to sense ultrasound. An ultrasound pulse of low frequency and low pressure efficiently evoked cellular calcium responses after transfecting with prestin(N7T, N308S). Moreover, pulsed ultrasound can also noninvasively stimulate target neurons expressing prestin(N7T, N308S) in deep regions of mouse brains. Our study delineates how an engineered auditory-sensing protein can cause mammalian cells to sense ultrasound stimulation. Moreover, our sonogenetic tools will serve as new strategies for noninvasive therapy in deep tissues.


Assuntos
Encéfalo/metabolismo , Audição/genética , Proteínas Motores Moleculares/genética , Neurônios/metabolismo , Animais , Ecolocação , Audição/fisiologia , Humanos , Camundongos , Proteínas Motores Moleculares/química , Neurônios/química , Engenharia de Proteínas/métodos , Ondas Ultrassônicas
2.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164275

RESUMO

Traumatic brain injury is known to reprogram the epigenome. Chromatin immunoprecipitation-sequencing of histone H3 lysine 27 acetylation (H3K27ac) and tri-methylation of histone H3 at lysine 4 (H3K4me3) marks was performed to address the transcriptional regulation of candidate regeneration-associated genes. In this study, we identify a novel enhancer region for induced WNT3A transcription during regeneration of injured cortical neurons. We further demonstrated an increased mono-methylation of histone H3 at lysine 4 (H3K4me1) modification at this enhancer concomitant with a topological interaction between sub-regions of this enhancer and with promoter of WNT3A gene. Together, this study reports a novel mechanism for WNT3A gene transcription and reveals a potential therapeutic intervention for neuronal regeneration.


Assuntos
Lesões Encefálicas Traumáticas/genética , Histonas/metabolismo , Neurônios/fisiologia , Proteína Wnt3A/genética , Acetilação , Animais , Lesões Encefálicas Traumáticas/metabolismo , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Epigênese Genética , Metilação , Neurônios/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Regeneração
3.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098078

RESUMO

The treatment of traumatic brain injury (TBI) remains a challenge due to limited knowledge about the mechanisms underlying neuronal regeneration. This current study compared the expression of WNT genes during regeneration of injured cortical neurons. Recombinant WNT3A showed positive effect in promoting neuronal regeneration via in vitro, ex vivo, and in vivo TBI models. Intranasal administration of WNT3A protein to TBI mice increased the number of NeuN+ neurons without affecting GFAP+ glial cells, compared to control mice, as well as retained motor function based on functional behavior analysis. Our findings demonstrated that WNT3A, 8A, 9B, and 10A promote regeneration of injured cortical neurons. Among these WNTs, WNT3A showed the most promising regenerative potential in vivo, ex vivo, and in vitro.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Neurônios/metabolismo , Regeneração , Proteína Wnt3A/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Masculino , Camundongos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3001-3012, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29913215

RESUMO

Due to the inhibitory microenvironment and reduced intrinsic growth capacity of neurons, neuronal regeneration of central nervous system remains challenging. Neurons are highly energy demanding and require sufficient mitochondria to support cellular activities. In response to stimuli, mitochondria undergo fusion/fission cycles to adapt to environment. It is thus logical to hypothesize that the plasticity of mitochondrial dynamics is required for neuronal regeneration. In this study, we examined the role of mitochondrial dynamics during regeneration of rat hippocampal neurons. Quantitative analysis showed that injury induced mitochondrial fission. As mitochondrial dysfunction has been implicated in neurodegenerative diseases, we tested the possibility that the mitochondrial therapy may promote neuronal regeneration. Supplying freshly isolated mitochondria to the injured hippocampal neurons not only significantly increased neurite re-growth but also restored membrane potential of injured hippocampal neurons. Together, our findings support the importance of mitochondrial dynamics during regeneration of injured hippocampal neurons and highlight the therapeutic prospect of mitochondria to the injured central nervous system.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Mitocôndrias/transplante , Neurônios/fisiologia , Regeneração , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/citologia , Hipocampo/lesões , Hipocampo/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/terapia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
5.
Transl Neurodegener ; 8: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210929

RESUMO

BACKGROUND: Mitochondria are the major source of intracellular adenosine triphosphate (ATP) and play an essential role in a plethora of physiological functions, including the regulation of metabolism and the maintenance of cellular homeostasis. Mutations of mitochondrial DNA, proteins and impaired mitochondrial function have been implicated in the neurodegenerative diseases, stroke and injury of the central nervous system (CNS). The dynamic feature of mitochondrial fusion, fission, trafficking and turnover have also been documented in these diseases. PERSPECTIVES: A major bottleneck of traditional approach to correct mitochondria-related disorders is the difficulty of drugs or gene targeting agents to arrive at specific sub-compartments of mitochondria. Moreover, the diverse nature of mitochondrial mutations among patients makes it impossible to develop one drug for one disease. To this end, mitochondrial transplantation presents a new paradigm of therapeutic intervention that benefits neuronal survival and regeneration for neurodegenerative diseases, stroke, and CNS injury. Supplement of healthy mitochondria to damaged neurons has been reported to promote neuronal viability, activity and neurite re-growth. In this review, we provide an overview of the recent advance and development on mitochondrial therapy. CONCLUSION: Key parameters for the success of mitochondrial transplantation depend on the source and quality of isolated mitochondria, delivery protocol, and cellular uptake of supplemented mitochondria. To expedite clinical application of the mitochondrial transplantation, current isolation protocol needs optimization to obtain high percentage of functional mitochondria, isolated mitochondria may be packaged by biomaterials for successful delivery to brain allowing for efficient neuronal uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA