Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2307210, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279606

RESUMO

Sepsis is a life-threatening condition that can progress to septic shock as the body's extreme response to pathogenesis damages its own vital organs. Staphylococcus aureus (S. aureus) accounts for 50% of nosocomial infections, which are clinically treated with antibiotics. However, methicillin-resistant strains (MRSA) have emerged and can withstand harsh antibiotic treatment. To address this problem, curcumin (CCM) is employed to prepare carbonized polymer dots (CPDs) through mild pyrolysis. Contrary to curcumin, the as-formed CCM-CPDs are highly biocompatible and soluble in aqueous solution. Most importantly, the CCM-CPDs induce the release of neutrophil extracellular traps (NETs) from the neutrophils, which entrap and eliminate microbes. In an MRSA-induced septic mouse model, it is observed that CCM-CPDs efficiently suppress bacterial colonization. Moreover, the intrinsic antioxidative, anti-inflammatory, and anticoagulation activities resulting from the preserved functional groups of the precursor molecule on the CCM-CPDs prevent progression to severe sepsis. As a result, infected mice treated with CCM-CPDs show a significant decrease in mortality even through oral administration. Histological staining indicates negligible organ damage in the MRSA-infected mice treated with CCM-CPDs. It is believed that the in vivo studies presented herein demonstrate that multifunctional therapeutic CPDs hold great potential against life-threatening infectious diseases.

2.
J Fluoresc ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460821

RESUMO

A design toward C-C bonded 2,6-bis(1H-1,2,3-triazol-4-yl)-9H-purine and 2-piperidinyl-6-(1H-1,2,3-triazol-4-yl)-9H-purine derivatives was established using the combination of Mitsunobu, Sonogashira, copper (I) catalyzed azide-alkyne cycloaddition, and SNAr reactions. 11 examples of 2,6-bistriazolylpurine and 14 examples of 2-piperidinyl-6-triazolylpurine intermediates were obtained, in 38-86% and 41-89% yields, respectively. Obtained triazole-purine conjugates expressed good fluorescent properties which were studied in the solution and in the thin layer film for the first time. Quantum yields reached up to 49% in DMSO for bistriazolylpurines and up to 81% in DCM and up to 95% in DMSO for monotriazolylpurines. Performed biological studies in mouse embryo fibroblast, human keratinocyte, and transgenic adenocarcinoma of the mouse prostate cell lines showed that most of obtained triazole-purine conjugates are not cytotoxic. The 50% cytotoxic concentration of the tested derivatives was in the range from 59.6 to 1528.7 µM.

3.
J Nanobiotechnology ; 20(1): 235, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590324

RESUMO

BACKGROUND: MXenes with interesting optical and electrical properties have been attractive in biomedical applications such as antibacterial and anticancer agents, but their low photogeneration efficiency of reactive oxygen species (ROS) and poor stability are major concerns against microbial resistance. METHODS: Water-dispersible single layer Ti3C2Tx-based MXene through etching tightly stacked MAX phase precursor using a minimally intensive layer delamination method. After addition of Cu(II) ions, the adsorbed Cu(II) ions underwent self-redox reactions with the surface oxygenated moieties of MXene, leading to in situ formation of Cu2O species to yield Cu2O/Ti3C2Tx nanosheets (heterostructures). RESULTS: Under NIR irradiation, the Cu2O enhanced generation of electron-hole pairs, which boosted the photocatalytic production of superoxide and subsequent transformation into hydrogen peroxide. Broad-spectrum antimicrobial performance of Cu2O/Ti3C2Tx nanosheets with sharp edges is attributed to the direct contact-induced membrane disruption, localized photothermal therapy, and in situ generated cytotoxic free radicals. The minimum inhibitory concentration of Cu2O/Ti3C2Tx nanosheets reduced at least tenfold upon NIR laser irradiation compared to pristine Cu2O/Ti3C2Tx nanosheets. The Cu2O/Ti3C2Tx nanosheets were topically administrated on the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on diabetic mice. CONCLUSION: Upon NIR illumination, Cu2O/Ti3C2Tx nanosheets eradicated MRSA and their associated biofilm to promote wound healing. The Cu2O/Ti3C2Tx nanosheets with superior catalytic and photothermal properties have a great scope as an effective antimicrobial modality for the treatment of infected wounds.


Assuntos
Diabetes Mellitus Experimental , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos , Oxirredução , Titânio/farmacologia
4.
Phys Chem Chem Phys ; 23(29): 15480-15484, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34263277

RESUMO

Surface-enhanced Raman spectroscopy (SERS) coupled with density functional theory (DFT) computations can characterise the adsorption orientation of a molecule on a nanoparticle surface. When using DFT to simulate SERS on a silver surface, one typically employs an atom (Ag), ion (Ag+), or cluster (Agx or Agx+) as the model surface. Here, by examining the nucleobase 2,6-diaminopurine (2,6-DAP) and then generalising our strategy to three other molecules, we show that employing silver oxide (Ag2O) as the model surface can quantitatively improve the accuracy of simulated SERS.

5.
J Nanobiotechnology ; 19(1): 448, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952588

RESUMO

BACKGROUND: Shrimp aquaculture has suffered huge economic losses over the past decade due to the outbreak of acute hepatopancreatic necrosis disease (AHPND), which is mainly caused by the bacteria Vibrio parahaemolyticus (V. parahaemolyticus) with the virulence pVA1 plasmid, which encodes a secretory photorhabdus insect-related (Pir) toxin composed of PirA and PirB proteins. The Pir toxin mainly attacks the hepatopancreas, a major metabolic organ in shrimp, thereby causing necrosis and loss of function. The pandemic of antibiotic-resistant strains makes the impact worse. METHODS: Mild pyrolysis of a mixture of polysaccharide dextran 70 and the crosslinker 1,8-diaminooctane at 180 â„ƒ for 3 h to form carbonized nanogels (DAO/DEX-CNGs) through controlled cross-linking and carbonization. The multifunctional therapeutic CNGs inherit nanogel-like structures and functional groups from their precursor molecules. RESULTS: DAO/DEX-CNGs manifest broad-spectrum antibacterial activity against Vibrio parahaemolyticus responsible for AHPND and even multiple drug-resistant strains. The polymer-like structures and functional groups on graphitic-carbon within the CNGs exhibit multiple treatment effects, including disruption of bacterial membranes, elevating bacterial oxidative stress, and neutralization of PirAB toxins. The inhibition of Vibrio in the midgut of infected shrimp, protection of hepatopancreas tissue from Pir toxin, and suppressing overstimulation of the immune system in severe V. parahaemolyticus infection, revealing that CNGs can effectively guard shrimp from Vibrio invasion. Moreover, shrimps fed with DAO/DEX-CNGs were carefully examined, such as the expression of the immune-related genes, hepatopancreas biopsy, and intestinal microbiota. Few adverse effects on shrimps were observed. CONCLUSION: Our work proposes brand-new applications of multifunctional carbon-based nanomaterials as efficient anti-Vibrio agents in the aquatic industry that hold great potential as feed additives to reduce antibiotic overuse in aquaculture.


Assuntos
Anti-Infecciosos/uso terapêutico , Nanogéis/uso terapêutico , Vibrioses/tratamento farmacológico , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Artemia/microbiologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Carbono/química , Dextranos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hepatopâncreas/patologia , Nanogéis/química , Nanogéis/toxicidade , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/patogenicidade
6.
Mikrochim Acta ; 186(3): 166, 2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739206

RESUMO

Stable and low-cost carbon dots (C-dots) were prepared from polyethylenimine (PEI) by a hydrothermal method. It is found that the fluorescence of the C-dots (best measured at excitation/emission wavelengths of 365/473 nm) is quenched by selective oxidation of surface PEI by periodate but recovers in the presence of uric acid (UA). It is assumed that this is due to the selective reduction of the nitrone groups to hydroxylamine groups by UA. The findings were used to design a fluorometric method for determination of UA that has a 2.3 nM detection limit. This is lower than that of reported fluorometric and enzymatic assays. The performance of the method has been validated by determination of UA in samples of human saliva. It is found that the results agree well with those obtained by a commercial UA assay. Graphical abstract Schematic presentation of the polyethylenimine (PEI) carbon nanodots (C-dots) as a fluorescent probe for uric acid. Their fluorescence is quenched by periodate (IO4-) due to oxidative formation of nitrone groups, an subsequently restored due to reduction by uric acid (UA).


Assuntos
Fluorometria/métodos , Pontos Quânticos/química , Ácido Úrico/análise , Carbono , Fluorescência , Humanos , Limite de Detecção , Nanoestruturas , Nitrogênio , Saliva/química
7.
Sensors (Basel) ; 19(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443204

RESUMO

Screening of illicit drugs for new psychoactive substances-namely cathinone-at crime scenes is in high demand. A dual-emission bovine serum albumin-stabilized gold nanoclusters probe was synthesized and used for quantitation and screening of 4-chloromethcathinone and cathinone analogues in an aqueous solution. The photoluminescent (PL) color of the bovine serum albumin-stabilized Au nanoclusters (BSA-Au NCs) probe solution changed from red to dark blue during the identification of cathinone drugs when excited using a portable ultraviolet light-emitting diodes lamp (365 nm). This probe solution allows the PL color-changing point and limit of detection down to 10.0 and 0.14 mM, respectively, for 4-chloromethcathinone. The phenomenon of PL color-changing of BSA-Au NCs was attributed to its PL band at 650 nm, quenching through an electron transfer mechanism. The probe solution was highly specific to cathinone drugs, over other popular illicit drugs, including heroin, cocaine, ketamine, and methamphetamine. The practicality of this BSA-Au NCs probe was assessed by using it to screen illicit drugs seized by law enforcement officers. All 20 actual cases from street and smuggling samples were validated using this BSA-Au NCs probe solution and then confirmed using gas chromatography-mass spectrometry. The results reveal this BSA-Au NCs probe solution is practical for screening cathinone drugs at crime scenes.


Assuntos
Alcaloides/isolamento & purificação , Técnicas Biossensoriais , Drogas Ilícitas/isolamento & purificação , Alcaloides/química , Animais , Bovinos , Colorimetria , Humanos , Drogas Ilícitas/química , Nanoestruturas/química , Soroalbumina Bovina/química
8.
Beilstein J Org Chem ; 15: 474-489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873231

RESUMO

The synthesis of novel fluorescent N(9)-alkylated 2-amino-6-triazolylpurine and 7-deazapurine derivatives is described. A new C(2)-regioselectivity in the nucleophilic aromatic substitution reactions of 9-alkylated-2,6-diazidopurines and 7-deazapurines with secondary amines has been disclosed. The obtained intermediates, 9-alkylated-2-amino-6-azido-(7-deaza)purines, were transformed into the title compounds by CuAAC reaction. The designed compounds belong to the push-pull systems and possess promising fluorescence properties with quantum yields in the range from 28% to 60% in acetonitrile solution. Due to electron-withdrawing properties of purine and 7-deazapurine heterocycles, which were additionally extended by triazole moieties, the compounds with electron-donating groups showed intramolecular charge transfer character (ICT/TICT) of the excited states which was proved by solvatochromic dynamics and supported by DFT calculations. In the 7-deazapurine series this led to increased fluorescence quantum yield (74%) in THF solution. The compounds exhibit low cytotoxicity and as such are useful for the cell labelling studies in the future.

9.
Anal Chem ; 90(23): 13891-13899, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30379061

RESUMO

The microRNA profiles within living cells are informative for diagnosis and prognosis of human cancers. In the present work, we developed a new sensing strategy based on branched DNA junction-enhanced isothermal circular strand displacement polymerization (B-ICSDP) for the detection and intracellular imaging of microRNAs in living cells of interest. A circular DNA template consisting of three repetitive fragments serves as the scaffold for the self-assembly of sophisticated signaling probes, resulting a shrunk branched DNA junction. Target microRNA triggers the opening of molecular beacon, not only restoring the quenched fluorescence but also activating a circular polymerization-based strand displacement reaction. Thus, patulous branched DNA junction is abundantly formed, generating the amplified signal. It is noteworthy that great heaps of branched product assemblies can be also achieved in living cells, and the intracellular enzymatic assembly based strategy is able to be used to recognize specific microRNA-expressed cancer cells. Moreover, different microRNAs coexisting in the same living cells can be simultaneously screened without any interference from each other by confocal laser scanning microscopy. The measured data from confocal fluorescence imaging of different cancer cells demonstrates that the B-ICSDP-based system is a promising alternative for in vivo analysis of microRNAs in complicated biological samples.


Assuntos
DNA Circular/química , MicroRNAs/análise , Células Cultivadas , DNA Circular/genética , Células HEK293 , Humanos , Células MCF-7 , Sondas de Oligonucleotídeos/química , Imagem Óptica , Polimerização
10.
Anal Chem ; 90(12): 7283-7291, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29787232

RESUMO

Stereospecific recognition of chiral molecules is ubiquitous in chemical and biological systems, thus leading to strong demand for the development of enantiomeric drugs, enantioselective sensors, and asymmetric catalysts. In this study, we demonstrate the ratio of d-Cys and l-Cys playing an important role in determining the optical properties and the structures of self-assembled Cys-Au(I) supramolecules prepared through a simple reaction of tetrachloroaurate(III) with chiral cysteine (Cys). The irregularly shaped -[d-Cys-Au(I)] n- or - [l-Cys-Au(I)] n- supramolecules with a size larger than 500 nm possessing strong absorption in the near-UV region and chiroptical characteristics were only obtained from the reaction of Au(III) with d-Cys or l-Cys. On the other hand, spindle-shaped -[d/l-Cys-Au(I)] n- supramolecules were formed when using Au(III) with mixtures of d/l-Cys. Our results have suggested that Au(I)···Au(I) aurophilic interactions, and stacked hydrogen bonding and zwitterionic interactions between d/l-Cys ligands are important in determining their structures. The NaBH4-mediated reduction induces the formation of photoluminescent gold nanoclusters (Au NCs) embedded in the chiral -[d-Cys-Au(I)] n- or -[l-Cys-Au(I)] n- supramolecules with a quantum yield of ca. 10%. The as-formed Au NCs/-[d-Cys-Au(I)] n- and Au NCs/-[l-Cys-Au(I)] n- are an enantiospecific substrate that can trap l-carnitine and d-carnitine, respectively, and function as a nanomatrix for surface-assisted laser desorption/ionization mass spectrometry (LDI-MS). The high absorption efficiency of laser energy, analyte-binding capacity, and homogeneity of the Au NCs/-[Cys-Au(I)] n- allow for quantitation of enantiomeric carnitine down to the micromolar regime with high reproducibility. The superior efficiency of the Au NCs/-[d-Cys-Au(I)] n- substrate has been further validated by quantification of l-carnitine in dietary supplements with accuracy and precision. Our study has opened a new avenue for chiral quantitation of various analytes through LDI-MS using metal nanocomposites consisting of NCs and metal-ligand complexes.


Assuntos
Carnitina/análise , Nanocompostos/química , Cisteína/química , Ouro/química , Lasers , Reprodutibilidade dos Testes , Estereoisomerismo
11.
Anal Bioanal Chem ; 410(18): 4555-4564, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29862429

RESUMO

We have devised a unique strategy for highly sensitive, selective, and colorimetric detection of mercury based on analyte-induced enhancement of the photocatalytic activity of TiO2-Au nanospheres (TiO2-Au NSs) toward degradation of methylene blue (MB). Through electrostatic interactions, Au nanoparticles are attached to poly-(sodium 4-styreneulfonate)/poly(diallyldimethylammonium chloride) modified TiO2 nanoparticles, which then form an Au shell on each TiO2 core through reduction of Au3+ with ascorbic acid. Notably, the deposition of Hg species (Hg2+/CH3Hg+) onto TiO2-Au NSs through strong Au-Hg aurophilic interactions speeds up catalytic degradation of MB. The first-order degradation rates of MB by TiO2-Au NSs and TiO2-Au-Hg NSs are 1.4 × 10-2 min-1 and 2.1 × 10-2 min-1, respectively. Using a commercial absorption spectrometer, the TiO2-Au NSs/MB approach provides linearity (R2 = 0.98) for Hg2+ over a concentration range of 10.0 to 100.0 nM, with a limit of detection (LOD) of 1.5 nM. On the other hand, using a low-cost smartphone app that records the color changes (ΔRGB) of MB solution based on the red-blue-green (RGB) component values, the TiO2-Au NSs/MB approach provides an LOD of 2.0 nM for Hg2+ and 5.0 nM for CH3Hg+, respectively. Furthermore, the smartphone app sensing system has been validated for the analyses of various samples, including tap water, lake water, soil, and Dorm II, showing its great potential for on-line analysis of environmental and biological samples. Graphical Abstract ᅟ.

12.
Phys Chem Chem Phys ; 19(19): 12085-12093, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28443925

RESUMO

In this study, we prepared photoluminescent l-cysteine (Cys)-capped gold nanoclusters (Cys-Au NCs) via NaBH4-mediated reduction of aggregated coordination polymers (supramolecules) of -[Cys-Au(i)]n-. The -[Cys-Au(i)]n- supramolecules with interesting chiral properties were formed through simple reactions of chloroauric acid (HAuCl4) with Cys at certain pH values (pH 3-7). The -[Cys-Au(i)]n- polymers could self-assemble into -[Cys-Au(i)]n- supramolecules with irregular morphologies and diameters larger than 500 nm through stacked hydrogen bonding and zwitterionic interactions between Cys ligands and through Au(i)Au(i) aurophilic interactions in solutions with pH values ≤7. The photoluminescent Au NCs (quantum yield = 11.6%) dominated by a Au13 core were embedded in -[Cys-Au(i)]n- supramolecules after NaBH4-mediated reduction. The optical and structural properties of Cys-Au NCs/-[Cys-Au(i)]n- nanocomposites were investigated, revealing that the interaction between Cys ligands plays a critical role in the self-assembly of -[Cys-Au(i)]n- supramolecules and in the formation of photoluminescent Cys-Au NCs embedded in the supramolecules. To further demonstrate that the photoluminescence properties and structures of the nanocomposites are mediated by the intermolecular forces of thiol ligands, other thiol ligands (l-penicillamine, l-homocysteine, 3-mercaptopropionic acid, and l-glutathione) and a ligand-crosslinking agent [bis(sulfosuccinimidyl) suberate; BS3] were used. We concluded that the electrostatic interactions, hydrogen bonding and steric effects dominate the polymer self-assembly into thiol-ligand-Au(i) supramolecules and thus the formation of Au NCs. Our study provides insights into the bottom-up synthesis of photoluminescent Au NCs from thiol-ligand-Au(i) complexes, polymers, and supramolecules. The hybrid Au NCs/-[Cys-Au(i)]n- nanocomposites can potentially be employed as drug carriers and bioimaging agents.


Assuntos
Ouro/química , Ligantes , Nanopartículas Metálicas/química , Cloretos/química , Compostos de Ouro/química , Concentração de Íons de Hidrogênio , Luz , Luminescência , Oxirredução , Polímeros
13.
Chembiochem ; 17(12): 1052-62, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-26864481

RESUMO

Gold nanoparticles (AuNPs) are useful for diagnostic and biomedical applications, mainly because of their ease in preparation and conjugation, biocompatibility, and size-dependent optical properties. However, bare AuNPs do not possess specificity for targets. AuNPs conjugated with DNA aptamers offer specificity for various analytes, such as proteins and small molecules/ions. Although DNA aptamers themselves have therapeutic and target-recognizing properties, they are susceptible to degradation in vivo. When DNA aptamers are conjugated to AuNPs, their stability and cell uptake efficiency both increase, making aptamer-AuNPs suitable for biomedical applications. Additionally, drugs can be efficiently conjugated with DNA aptamer-AuNPs to further enhance their therapeutic efficiency. This review focuses on the applications of DNA aptamer-based AuNPs in several biomedical areas, including anticoagulation, anticancer, antibacterial, and antiviral applications.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Antineoplásicos/química , Antineoplásicos/toxicidade , Aptâmeros de Nucleotídeos/química , Transporte Biológico , Coagulação Sanguínea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Portadores de Fármacos/química , Humanos
14.
Chem Rec ; 16(3): 1664-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27243417

RESUMO

In this Personal Account, we briefly address our journey in developing photoluminescent nanomaterials for sensing purposes, with a focus on gold nanodots (Au NDs). Their synthetic strategies, optical properties, and sensing applications are emphasized. The Au NDs can be simply prepared from the etching of small-sized Au nanoparticles (<3 nm in diameter) by thiol compounds such as 11-mercaptoundecanoic acid under alkaline conditions. This simple approach allows the preparation of various functional Au NDs by choosing different thiol compounds as etching agents. Since the optical properties of Au NDs are highly dependent on the core and shell of each Au ND, the selection of etching reagents is important. Over the years we have developed various sensing systems using Au NDs for the detection of metal ions, anions, and proteins, based on analyte-induced photoluminescence quenching/enhancement of Au NDs as a result of changes in their oxidation state, shell composition, and structure.

15.
Analyst ; 141(5): 1611-26, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26853370

RESUMO

Gold nanoparticles (Au NPs) have become one of the most popular materials for sensing of analytes of interest in the last decade, mainly because of their ease in preparation and conjugation, stability, biocompatibility, and size-dependent optical properties. We have witnessed many sensitive and selective Au NP based optical systems for the quantitation of metal ions, anions, proteins, and DNA, based on analyte induced changes in their absorption, fluorescence, and scattering. In this tutorial review, we briefly discuss wet chemical approaches for the preparation of Au NPs. Sensing mechanisms and strategies of Au NP based optical systems are provided to show basic concepts in designing sensitive and selective sensing systems. Strategies for signal amplification applied in Au NP based systems are emphasized for the analysis of trace amounts of analytes in real samples. Many excellent Au NP based optical sensing systems are discussed to highlight their practicality for the analysis of complicated biological and environmental samples. The tutorial review ends with the discussion of the challenges and future trends of Au NP based optical sensing systems.

16.
Analyst ; 141(21): 6093-6103, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27722232

RESUMO

Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry.


Assuntos
Compostos de Mercúrio , Nanopartículas Metálicas , Polissacarídeos/análise , Telúrio , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Anal Bioanal Chem ; 408(24): 6557-65, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27531029

RESUMO

We have developed a simple route for the preparation of aminophenylboronic acid polymer nanoparticles (APB PNs) from 3-aminophenylboronic acid and formaldehyde under alkaline conditions according to an extended StÓ§ber method. Insulin and R6G have been selected to prepare functional insulin-APB PNs and R6G-APB PNs, respectively. During the formation of APB PNs, the representative molecules are embedded inside the APB PNs. Through specific binding of glucose with boronic acid moieties on the R6G-APB PNs and insulin-APB PNs, glucose induces expansion of the APB PNs, leading to release of R6G and insulin molecules, respectively. As a result of release of R6G molecules, the fluorescence intensity of R6G-APB PN solution increases, allowing quantitation of glucose in PBS solutions (10 mM, pH 7.4) with a linear range over 0-10 mM. Release of insulin from insulin-APB PNs is significant and rapid when the glucose concentration is higher than 7 mM. Having advantages of low cost, simple preparation, biocompatibility, and continuous response to glucose, the insulin-APB PNs hold great potential as an alternative for treating diabetic patients. Graphical Abstract Quantitation of glucose and release of insulin by glucose responsive 3-aminophenylboronic acid polymer nanoparticles.


Assuntos
Glicemia/análise , Ácidos Borônicos/química , Corantes Fluorescentes/química , Insulina/análise , Nanopartículas/química , Rodaminas/química , Adulto , Feminino , Humanos , Insulina/administração & dosagem , Nanopartículas/ultraestrutura , Espectrometria de Fluorescência/métodos
18.
Anal Bioanal Chem ; 408(1): 287-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26507328

RESUMO

A simple, sensitive, and selective fluorescence assay for the detection of CN(-) has been demonstrated using bovine serum albumin-stabilized cerium/gold nanoclusters (BSA-Ce/Au NCs). When excited at 325 nm, BSA-Ce/Au NCs have two fluorescence bands centered at 410 and 658 nm, which are assigned to BSA-Ce/Au complexes and Au NCs, respectively. Each BSA-Ce/Au NC contains 22 Au atoms and 8 Ce ions. Through etching of the Au core in BSA-Ce/Au NCs by CN(-), the fluorescence at 658 nm is quenched, while that at 410 nm enhances during the formation of complexes among BSA, Ce(4+), and [Au(CN)2](-). The circular dichroism spectra reveal that relative to BSA-Au NCs, BSA-Ce/Au NCs have looser structures of the BSA templates. As a result, it is easier for CN(-) to access the Au cores in BSA-Ce/Au NCs, allowing faster (within 15 min) etching of the Au cores by CN(-). At pH 12.0, this assay allows the detection of CN(-) down to 50 nM, with linearity over 0.1-15 µM. This assay has been applied to the determination of the concentrations of CN(-) in spiked drinking water and pond water samples.


Assuntos
Cério/química , Cianetos/análise , Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Água Potável/análise , Fluorescência , Lagoas/análise , Sensibilidade e Especificidade
19.
Anal Chem ; 87(9): 4925-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853548

RESUMO

We have developed a simple, sensitive, and rapid fluorescence assay for the detection of cancer cells, based on "turn-on" retro-self-quenched fluorescence inside the cells. 1,3-Phenylenediamine resin (DAR) nanoparticles (NPs) containing rhodamine 6G (R6G) are conjugated with aptamer (apt) sgc8c to prepare sgc8c-R6GDAR NPs, while that containing rhodamine 101 (R101) are conjugated with TD05 for the preparation of TD05-R101DAR NPs. The sgc8c-R6GDAR and TD05-R101DAR NPs separately recognize CCRF-CEM and Ramos cells. The fluorescence intensities of the two apt-DAR NPs are both weak due to self-quenching, but they increase inside the cells as a result of release of the fluorophores from the apt-DAR NPs. The apt-DAR NPs' structure becomes less compact at low pH value, leading to the release of the fluorophores. The sgc8c-R6GDAR and TD05-R101DAR NPs allow detection of as low as 44 CCRF-CEM cells and 79 Ramos cells mL(-1), respectively, using a commercial reader within 10 min. Practicality of the two probes have been validated by the quantitation and identification of CCRF-CEM and Ramos cells spiked in blood samples through conventional fluorescence and flow cytometry analysis, with advantages of sensitivity, selectivity, and rapidity.


Assuntos
Aptâmeros de Nucleotídeos/química , Separação Celular/métodos , Fluorescência , Nanopartículas/química , Neoplasias/patologia , Polímeros/química , Animais , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/diagnóstico , Células Tumorais Cultivadas
20.
Anal Chem ; 87(8): 4253-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25824850

RESUMO

A series of dual-ligand cofunctionalized fluorescent gold nanodots with similar fluorescence and diverse surface properties has been designed and synthesized to build a protein sensing array. Using this "chemical nose/tongue" strategy, fluorescence response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eight proteins have been well distinguished at low concentration (A280 = 0.005) based on this sensor array. The practicability of this sensor array was further validated by high accuracy (100%) examination of 48 unknown protein samples.


Assuntos
Corantes Fluorescentes/química , Ouro/química , Medições Luminescentes , Nanopartículas Metálicas/química , Proteínas/análise , Análise Discriminante , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA