Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428397

RESUMO

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Assuntos
Glicoproteínas , Simulação de Dinâmica Molecular , Humanos , Microscopia Crioeletrônica , Glicoproteínas/química , Glicosilação , Polissacarídeos/química
2.
Plant J ; 119(1): 283-299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606500

RESUMO

Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição , Ubiquitinação , Malus/genética , Malus/fisiologia , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Resistência à Seca
3.
PLoS Biol ; 20(6): e3001649, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709082

RESUMO

Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Cílios , Proteínas do Olho , Camundongos , Microtúbulos
4.
Mol Ther ; 31(10): 2948-2961, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37580905

RESUMO

Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Animais , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Degeneração Retiniana/patologia , Camundongos Knockout , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Eletrorretinografia
5.
BMC Public Health ; 24(1): 551, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388363

RESUMO

During the COVID-19 pandemic, Taiwan has implemented strict border controls and community spread prevention measures. As part of these efforts, the government also implemented measures for public transportation. In Taiwan, there are two primary public transportation systems: Taiwan Railways (TR) is commonly utilized for local travel, while the Taiwan High-Speed Rail (THSR) is preferred for business trips and long-distance journeys due to its higher speed. In this study, we examined the impact of these disease prevention measures on the number of passengers and duration of stay in two major public transportation systems during the first community outbreak from April 29th to May 29th, 2021. Using data from a local telecommunications company, our study observed an expected decrease in the number of passengers after the cancellation of non-reserved seats at both TR and THSR stations across all 19 cities in the main island of Taiwan. Surprisingly, however, the duration of stay in some of the cities unexpectedly increased, especially at THSR stations. This unanticipated rise in the duration of stay has the potential to elevate contact probability among passengers and, consequently, the transmission rate. Our analysis shows that intervention policies may result in unforeseen outcomes, highlighting the crucial role of human mobility data as a real-time reference for policymakers. It enables them to monitor the impact of disease prevention measures and facilitates informed, data-driven decision-making.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Taiwan/epidemiologia , Pandemias/prevenção & controle , Surtos de Doenças/prevenção & controle , Meios de Transporte
6.
Proteomics ; 23(20): e2300143, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37271932

RESUMO

Complete coverage of all N-glycosylation sites on the SARS-CoV2 spike protein would require the use of multiple proteases in addition to trypsin. Subsequent identification of the resulting glycopeptides by searching against database often introduces assignment errors due to similar mass differences between different permutations of amino acids and glycosyl residues. By manually interpreting the individual MS2 spectra, we report here the common sources of errors in assignment, especially those introduced by the use of chymotrypsin. We show that by applying a stringent threshold of acceptance, erroneous assignment by the commonly used Byonic software can be controlled within 15%, which can be reduced further if only those also confidently identified by a different search engine, pGlyco3, were considered. A representative site-specific N-glycosylation pattern could be constructed based on quantifying only the overlapping subset of N-glycopeptides identified at higher confidence. Applying the two complimentary glycoproteomic software in a concerted data analysis workflow, we found and confirmed that glycosylation at several sites of an unstable Omicron spike protein differed significantly from those of the stable trimeric product of the parental D614G variant.

7.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110940

RESUMO

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Assuntos
Enterovirus Humano A , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Reishi , Criança , Animais , Humanos , Camundongos , Enterovirus Humano D/genética , Enterovirus Humano A/genética , Vacinas Combinadas , Antígenos Virais , Imunoglobulina A , Imunoglobulina G
8.
Artigo em Inglês | MEDLINE | ID: mdl-36781446

RESUMO

The recent discovery of the head-direction (HD) system in fruit flies has provided unprecedented insights into the neural mechanisms of spatial orientation. Despite the progress, the neural substance of global inhibition, an essential component of the HD circuits, remains controversial. Some studies suggested that the ring neurons provide global inhibition, while others suggested the Δ7 neurons. In the present study, we provide evaluations from the theoretical perspective by performing systematic analyses on the computational models based on the ring-neuron (R models) and Δ7-neurons (Delta models) hypotheses with modifications according to the latest connectomic data. We conducted four tests: robustness, persistency, speed, and dynamical characteristics. We discovered that the two models led to a comparable performance in general, but each excelled in different tests. The R Models were more robust, while the Delta models were better in the persistency test. We also tested a hybrid model that combines both inhibitory mechanisms. While the performances of the R and Delta models in each test are highly parameter-dependent, the Hybrid model performed well in all tests with the same set of parameters. Our results suggest the possibility of combined inhibitory mechanisms in the HD circuits of fruit flies.


Assuntos
Conectoma , Animais , Neurônios/fisiologia , Drosophila , Orientação Espacial , Percepção Espacial
9.
Cell Biol Toxicol ; 39(5): 2365-2379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764897

RESUMO

Histone deacetylases (HDACs) has been implicated in cardiac diseases, while the role of HDAC6 in dilated cardiomyopathy (DCM) remains obscure. The in silico analyses predicted potential association of HDAC6 with autophagy-related genes and DCM. Thus, we evaluated the functional relevance of HDAC6 in DCM in vivo and in vitro. We developed a rat model in vivo and a cell model in vitro by doxorubicin (DOX) induction to simulate DCM. HDAC6 expression was determined in myocardial tissues of DCM rats. DCM rats exhibited elevated HDAC6 mRNA and protein expression as compared to sham-operated rats. We knocked HDAC6 down and/or overexpressed NLRP3 in vivo and in vitro to characterize their roles in cardiomyocyte autophagy. It was established that shRNA-mediated HDAC6 silencing augmented cardiomyocyte autophagy and suppressed NLRP3 inflammasome activation, thus ameliorating cardiac injury in myocardial tissues of DCM rats. Besides, in DOX-injured cardiomyocytes, HDAC6 silencing also diminished NLRP3 inflammasome activation and cell apoptosis but enhanced cell autophagy, whereas ectopic NLRP3 expression negated the effects of HDAC6 silencing. Since HDAC6 knockdown correlates with enhanced cardiomyocyte autophagy and suppressed NLRP3 inflammasome activation through an interplay with NLRP3, it is expected to be a potential biomarker and therapeutic target for DCM. 1. HDAC6 was up-regulated in DCM rats. 2. HDAC6 knockdown promoted cardiomyocyte autophagy to relieve cardiac dysfunction. 3. HDAC6 knockdown inhibited NLRP3 inflammasome and promoted cardiomyocyte autophagy. 4. Silencing HDAC6 promoted autophagy and repressed apoptosis in cardiomyocytes. 5. This study provides novel therapeutic targets for DCM.


Assuntos
Cardiomiopatia Dilatada , Desacetilase 6 de Histona , Inflamassomos , Animais , Ratos , Autofagia/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Linhagem Celular , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Remodelação Ventricular
10.
Proc Natl Acad Sci U S A ; 117(41): 25859-25868, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33004630

RESUMO

Endometriosis is a highly prevalent gynecological disease with severe negative impacts on life quality and financial burden. Unfortunately, there is no cure for this disease, which highlights the need for further investigation about the pathophysiology of this disease to provide clues for developing novel therapeutic regimens. Herein, we identified that vascular endothelial growth factor (VEGF)-C, a potent lymphangiogenic factor, is up-regulated in endometriotic cells and contributes to increased lymphangiogenesis. Bioinformatic analysis and molecular biological characterization revealed that VEGF-C is negatively regulated by an orphan nuclear receptor, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII). Further studies demonstrated that proinflammatory cytokines, via suppression of COUP-TFII level, induce VEGF-C overexpression. More importantly, we show that functional VEGF-C is transported by extracellular vesicles (EVs) to enhance the lymphangiogenic ability of lymphatic endothelial cells. Autotransplanted mouse model of endometriosis showed lenvatinib treatment abrogated the increased lymphatic vessels development in the endometriotic lesion, enlarged retroperitoneal lymph nodes, and immune cells infiltration, indicating that blocking VEGF-C signaling can reduce local chronic inflammation and concomitantly endometriosis development. Evaluation of EV-transmitted VEGF-C from patients' sera demonstrates it is a reliable noninvasive way for clinical diagnosis. Taken together, we identify the vicious cycle of inflammation, COUP-TFII, VEGF-C, and lymphangiogenesis in the endometriotic microenvironment, which opens up new horizons in understanding the pathophysiology of endometriosis. VEGF-C not only can serve as a diagnostic biomarker but also a molecular target for developing therapeutic regimens.


Assuntos
Endometriose/imunologia , Vesículas Extracelulares/imunologia , Sistema Imunitário/imunologia , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/imunologia , Animais , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/imunologia , Citocinas/genética , Citocinas/imunologia , Endometriose/genética , Endometriose/fisiopatologia , Células Endoteliais/imunologia , Vesículas Extracelulares/genética , Feminino , Humanos , Vasos Linfáticos/imunologia , Camundongos , Fator C de Crescimento do Endotélio Vascular/genética
11.
Eur Arch Otorhinolaryngol ; 280(3): 1111-1117, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35925401

RESUMO

PURPOSE: To analyze the prevalence and associations of facial canal dehiscence (FCD), dural exposure, and labyrinthine fistula in chronic otitis media (COM) with and without cholesteatoma. METHODS: This was a retrospective study performed in an academic medical center. Patients who received tympanoplasty with mastoidectomy for COM with and without cholesteatoma were included. The prevalence of FCD, dural exposure, and labyrinthine fistula in COM with and without cholesteatoma (mastoiditis) and their relationships were analyzed. RESULTS: A total of 189 patients, including 107 (56.6%) females and 82 (43.4%) males, with 191 ears were included. There were 149 cases (78.0%) of cholesteatoma and 42 patients (22.0%) with mastoiditis. FCD was noted in 27.5% of patients with cholesteatoma and 9.5% of patients with mastoiditis. Dural exposure was found in 21 patients (14.1%) with cholesteatoma and 4 patients (9.5%) with mastoiditis. Eleven patients (7.4%) with cholesteatoma and 1 patient (2.4%) with mastoiditis had labyrinthine fistula. Patients with a labyrinthine fistula had nearly a fivefold greater chance (OR = 4.924, 95% CI = 1.355-17.896, p = 0.015) of having FCD than those without a fistula. There was a positive correlation between dural exposure and labyrinthine fistula (P = 0.011, Fisher's exact test). CONCLUSION: FCD, dural exposure, and labyrinthine fistula are common complications in COM. These complications are more frequently observed in patients with cholesteatoma than in patients with mastoiditis. Surgeons should pay more attention to the treatment of COM.


Assuntos
Colesteatoma da Orelha Média , Colesteatoma , Fístula , Doenças do Labirinto , Mastoidite , Otite Média , Masculino , Feminino , Humanos , Colesteatoma da Orelha Média/complicações , Colesteatoma da Orelha Média/cirurgia , Colesteatoma da Orelha Média/epidemiologia , Mastoidite/complicações , Estudos Retrospectivos , Colesteatoma/complicações , Otite Média/complicações , Otite Média/cirurgia , Fístula/epidemiologia , Fístula/etiologia , Fístula/cirurgia , Doença Crônica , Doenças do Labirinto/epidemiologia , Doenças do Labirinto/etiologia , Doenças do Labirinto/cirurgia
12.
Environ Monit Assess ; 195(11): 1330, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848742

RESUMO

PPCPs (pharmaceuticals and personal care products) are widely found in the environment and can be a risk to human and ecosystem health. In this study, spatiotemporal distribution, critical risk source identification and potential risks of 14 PPCPs found in water collected from sampling points in Luoma Lake and its inflowing rivers in two seasons in 2019 and 2020 were investigated. The PPCPs concentrations ranged from 27.64 ng·L-1 to 613.08 ng·L-1 in December 2019, and from 16.67 ng·L-1 to 3287.41 ng·L-1 in April 2020. Ketoprofen (KPF) dominated the PPCPs with mean concentrations of 125.85 ng·L-1 and 640.26 ng·L-1, respectively. Analysis of sources showed that the pollution in Luoma Lake mostly originated from sewage treatment plant effluents, inflowing rivers and domestic wastewater. Among them, the inflowing rivers contributed the most (82.95%) to the concentration of total PPCPs. The results of ecological risk assessment showed that there was a moderate risk (0.1 < RQs < 1) from carbamazepine (CBZ) in December 2019 and a high risk (RQs > 1) from naproxen (NPX) in April 2020. The results of human risk assessment found that NPX posed a high risk to infant health, and we found that NPX was associated with 83 diseases according to Comparative Toxicogenomics Database. NPX was identified as a substance requiring major attention. The results provide an understanding of the concentrations and ecological risks of PPCPs in Luoma Lake. We believe the data will support environmental departments to develop management strategies and prevent PPCPs pollution.


Assuntos
Cosméticos , Poluentes Químicos da Água , Humanos , Água/análise , Lagos/análise , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Cosméticos/análise , Medição de Risco , Rios , Preparações Farmacêuticas , China
13.
Immunol Cell Biol ; 100(7): 507-528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578380

RESUMO

Leukemia and lymphoma-the most common hematological malignant diseases-are often accompanied by complications such as drug resistance, refractory diseases and relapse. Amino acids (AAs) are important energy sources for malignant cells. Tumor-mediated AA metabolism is associated with the immunosuppressive properties of the tumor microenvironment, thereby assisting malignant cells to evade immune surveillance. Targeting abnormal AA metabolism in the tumor microenvironment may be an effective therapeutic approach to address the therapeutic challenges of leukemia and lymphoma. Here, we review the effects of glutamine, arginine and tryptophan metabolism on tumorigenesis and immunomodulation, and define the differences between tumor cells and immune effector cells. We also comment on treatments targeting these AA metabolism pathways in lymphoma and leukemia and discuss how these treatments have profound adverse effects on tumor cells, but leave the immune cells unaffected or mildly affected.


Assuntos
Leucemia , Linfoma , Aminoácidos , Humanos , Imunomodulação , Leucemia/terapia , Linfoma/terapia , Microambiente Tumoral
14.
Int J Mol Sci ; 23(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142685

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells' absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell-cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain.


Assuntos
Intoxicação por MPTP , Doenças Neurodegenerativas , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurotoxinas/efeitos adversos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética
15.
Cancer Sci ; 112(4): 1357-1368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33416209

RESUMO

In recent years, the excellent curative effect of CD19-specific chimeric antigen receptor (CAR) T-cell therapy has brought hope to patients with relapsing or refractory B-cell hematological malignancies, however relapse after CAR T-cell infusion has hindered the widespread clinical application of this immunotherapy and targeted antigen-negative relapse has caused widespread concern. Consequently, strategies for increasing targeted antigens have been created. In addition to the most widely applied target, namely CD19, researchers have further explored the possibility of other targets, such as CD20, CD22, CD33, and CD123, and have tested a series of combination antigen CAR T-cell therapies. Here, we summarize the current preclinical and clinical studies of dual-target CAR T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Humanos , Imunoterapia/métodos , Linfócitos T/imunologia
16.
Behav Pharmacol ; 32(6): 472-478, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101632

RESUMO

Dezocine is an opioid with low efficacy at µ-opioid and κ-opioid receptors. It also inhibits the reuptake of norepinephrine and serotonin. Dezocine is an effective analgesic against various clinical painful conditions and is widely used in many Asian countries. Given the unique pharmacology of dezocine, the drug may also have antidepressant-like properties. However, no published preclinical study has explored this possibility. This study examined the potential antidepressant-like activity of dezocine in mice. Male ICR mice were used in the forced swimming test, the tail suspension test, the warm water tail withdrawal test and locomotor activity test to test the effects of dezocine (0.3-3.0 mg/kg). The 5-HT1A receptor antagonist WAY-100635 (1 mg/kg), the µ-opioid receptor antagonist ß-funaltrexamine (2 mg/kg) and the κ-opioid receptor agonist U50488 (1 mg/kg) were also studied in combination with dezocine. Dezocine produced a dose-dependent decrease in the immobility time in the forced swimming test and tail suspension test at doses that did not alter the motoric activity as determined in the locomotion test. WAY-100635 and U50488 but not ß-funaltrexamine pretreatment significantly blocked the effects of dezocine. Dezocine dose-dependently increased the latency in the tail withdrawal test which was blocked by WAY-100635 and ß-funaltrexamine. Combined, these results suggest that dezocine may have antidepressant-like effects. Considering the well-documented analgesic property of dezocine, it may be useful to treat pain and depression comorbidity.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores Opioides kappa , Receptores Opioides mu , Tetra-Hidronaftalenos/farmacologia , Analgésicos/farmacologia , Animais , Antidepressivos/farmacologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia Combinada/métodos , Camundongos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Resultado do Tratamento
17.
Exp Cell Res ; 396(1): 112288, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941808

RESUMO

Cancer stem cells (CSCs) play an important role in shaping the invasive cancer phenotype by contributing to tumor initiation, metastasis, relapse, and therapeutic resistance in non-small cell lung cancer (NSCLC). The Aryl hydrocarbon receptor (AhR), a ligand activated transcription factor, which is well known for mediating the toxicity and tumorigenesis of a variety of environmental pollutants, has been extensively recognized as an important mediator in NSCLC development. Here, evidence showed that AhR was overexpressed in NSCLC tissues, and a high AhR protein level was associated with an aggressive tumor phenotype. Knockdown of AhR suppressed cell proliferation, invasion and migration, as well as CSC-like properties, while upregulation and activation of AhR enhanced CSC-like properties and increased stem cell-associated gene expression in NSCLC cells. Elevated and activated AhR leads to phosphorylation of janus kinase 2 (Jak2), as well as its downstream effector, activator of transcription 3 (STAT3), while inhibition of Jak2/STAT3 signaling by pharmacologic approach attenuates the effects of AhR-mediated NSCLC cell stemness, suggesting a role for the Jak2/STAT3 pathway in AhR-regulated NSCLC stemness. In summary, our study uncovers a transcriptional-independent mechanism of AhR through which AhR mediates NSCLC stemness via Jak2/STAT3 signaling pathway, indicating a promising target for the treatment of NSCLC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Janus Quinase 2/genética , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Fator de Transcrição STAT3/genética , Adulto , Idoso , Animais , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 2/metabolismo , Cinurenina/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Nitrilas , Fenótipo , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
18.
Biol Res ; 54(1): 19, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238380

RESUMO

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.


Assuntos
Silício , Estresse Fisiológico , Agricultura , Plantas , Solo
19.
Int J Toxicol ; 40(1): 40-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33148080

RESUMO

Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance (P < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups (P > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Marcha/efeitos dos fármacos , Nanopartículas/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Vincristina/toxicidade , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
J Cell Mol Med ; 24(5): 3139-3148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970902

RESUMO

Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1ß), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1ß, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3-/- ) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3-/- mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Interleucina-1beta/genética , Pneumonia/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Vitamina B 6/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA