Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small Methods ; : e2400291, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779741

RESUMO

Triple-negative breast cancer (TNBC) remains a significant challenge in terms of treatment, with limited efficacy of chemotherapy due to side effects and acquired drug resistance. In this study, a threose nucleic acid (TNA)-mediated antisense approach is employed to target therapeutic Akt genes for TNBC therapy. Specifically, two new TNA strands (anti-Akt2 and anti-Akt3) are designed and synthesized that specifically target Akt2 and Akt3 mRNAs. These TNAs exhibit exceptional enzymatic resistance, high specificity, enhance binding affinity with their target RNA molecules, and improve cellular uptake efficiency compared to natural nucleic acids. In both 2D and 3D TNBC cell models, the TNAs effectively inhibit the expression of their target mRNA and protein, surpassing the effects of scrambled TNAs. Moreover, when administered to TNBC-bearing animals in combination with lipid nanoparticles, the targeted anti-Akt TNAs lead to reduced tumor sizes and decreased target protein expression compared to control groups. Silencing the corresponding Akt genes also promotes apoptotic responses in TNBC and suppresses tumor cell proliferation in vivo. This study introduces a novel approach to TNBC therapy utilizing TNA polymers as antisense materials. Compared to conventional miRNA- and siRNA-based treatments, the TNA system holds promise as a cost-effective and scalable platform for TNBC treatment, owing to its remarkable enzymatic resistance, inexpensive synthetic reagents, and simple production procedures. It is anticipated that this TNA-based polymeric system, which targets anti-apoptotic proteins involved in breast tumor development and progression, can represent a significant advancement in the clinical development of effective antisense materials for TNBC, a cancer type that lacks effective targeted therapy.

2.
Nanoscale ; 13(5): 3184-3193, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33527933

RESUMO

Short circulation lifetime, poor blood-brain barrier (BBB) permeability and low targeting specificity limit nanovehicles from crossing the vascular barrier and reaching the tumor site. Consequently, the precise diagnosis of malignant brain tumors remains a great challenge. This study demonstrates the imaging of photostable biopolymer-coated nanodiamonds (NDs) with tumor targeting properties inside the brain. NDs are labeled with PEGylated denatured bovine serum albumin (BSA) and tumor vasculature targeting tripeptides RGD. The modified NDs show high colloidal stability in different buffer systems. Moreover, it is found that discrete dcBSA-PEG-NDs cross the in vitro BBB model more effectively than aggregated NDs. Importantly, compared with the non-targeting NDs, RGD-dcBSA-PEG-NDs can selectively target the tumor site in U-87 MG bearing mice after systemic injection. Overall, this discrete ND system enables efficacious brain tumor visualization with minimal toxicity to other major organs, and is worthy of further investigation into the applications as a unique platform for noninvasive theragnostics and/or thermometry at different stages of human diseases in the brain.


Assuntos
Neoplasias Encefálicas , Nanodiamantes , Animais , Transporte Biológico , Biopolímeros , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Camundongos
3.
Nanoscale ; 12(4): 2464-2471, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31915778

RESUMO

G-quadruplex structures are becoming useful alternative interaction modules for the assembly of DNA nanomaterials because of their unique inducibility by cations. In this study, we demonstrated a new strategy for the assembly of polymeric DNA nanoarchitectures in the presence of cations, such as K+ and Na+, by employing G-quartet toeholds at the edges of discrete mini-square DNA building blocks as adhesive units. In comparison with the Watson-Crick base-paired duplex linkers, G-quadruplex arrays embedded in the self-assembled DNA system exhibit higher thermal stability. The morphology of these doughnut-shaped or spherical-shaped DNA nanostructures is highly regulated by the orientation of the folded G-quadruplexes either in parallel or antiparallel orientation in response to different cations. Furthermore, this G-quadruplex-mediated assembly strategy is able to manipulate the cycling of DNA assemblies between discrete and polymeric states by means of introducing cations and chelating agents sequentially. This property enables the reversible manipulation of the DNA-based nanosystems for at least 4 cycles. The G-quadruplex array embedded in this self-assembled DNA system can become a scaffold for functional molecules, as a number of organic molecules and proteins exhibit specific binding to these G-quadruplex structures. Besides, embedded G-quadruplexes are also considered as functional components of nanoscale electronic materials due to their electron transport through the stacked orientation of the G-quartet. Therefore, this work is an important step towards obtaining reversible, responsive G-quadruplex-induced DNA-based nanomaterials with versatile functionalities which will be highly useful in further electronic, biomedical and drug-delivery applications.


Assuntos
Adesivos , DNA/química , Quadruplex G , Nanoestruturas/química , Cátions/química , Transporte de Elétrons , Eletrônica , Conformação de Ácido Nucleico
4.
ACS Appl Mater Interfaces ; 12(26): 28928-28940, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432847

RESUMO

The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Animais , Antineoplásicos/química , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Camundongos , Nanotubos/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA