Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cerebellum ; 23(2): 401-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943575

RESUMO

Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.


Assuntos
Disfunção Cognitiva , Oxigenoterapia Hiperbárica , Peptídeos , Ataxias Espinocerebelares , Camundongos , Masculino , Feminino , Animais , Oxigenoterapia Hiperbárica/métodos , Doenças Neuroinflamatórias , Disfunção Cognitiva/terapia , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/tratamento farmacológico
2.
J Neurochem ; 118(2): 288-303, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554323

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant inherited disorder characterized by degeneration of spinocerebellar tracts and selected brainstem neurons owing to the expansion of a CAG repeat of the human TATA-binding protein (hTBP) gene. To gain insight into the pathogenesis of this hTBP mutation, we generated transgenic mice with the mutant hTBP gene driven by the Purkinje specific protein (Pcp2/L7) gene promoter. Mice with the expanded hTBP allele developed ataxia within 2-5 months. Behavioral analysis of L7-hTBP transgenic mice showed reduced fall latency in a rotarod assay. Purkinje cell degeneration was identified by immunostaining of calbindin and IP3R1. Reactive gliosis and neuroinflammation occurred in the transgenic cerebellum, accompanied by up-regulation of GFAP and Iba1. The L7-hTBP transgenic mice were thus confirmed to recapitulate the SCA17 phenotype and were used as a disease model to explore the potential of granulocyte-colony stimulating factor in SCA17 treatment. Our results suggest that granulocyte-colony stimulating factor has a neuroprotective effect in these transgenic mice, ameliorating their neurological and behavioral deficits. These data indicate that the expression of the mutant hTBP in Purkinje cells is sufficient to produce cell degeneration and an ataxia phenotype, and constitutes a good model for better analysis of the neurodegeneration in SCA17.


Assuntos
Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Ataxias Espinocerebelares/genética , Proteína de Ligação a TATA-Box/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/prevenção & controle , Proteína de Ligação a TATA-Box/uso terapêutico
3.
Neurosci Lett ; 738: 135337, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877710

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant neurodegenerative disease caused by CAG expansion in the gene encoding the TATA-binding protein (TBP). The neurological features of SCA17 are Purkinje cell loss and gliosis. We have generated SCA17 transgenic mice which recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Our previous study identified the activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) occurred in the SCA17 cerebella, this study aims to study the role of ERK activation in SCA17. The levels of pERK, calbindin, and gliosis markers on the mouse cerebellum at 4-8 weeks old were analyzed to elucidate the correlation among behavioral performance, ERK activation and Purkinje cell degeneration. The motor incoordination was initiated in SCA17 mice at 6 weeks old. We found that the presence of TBP nuclear aggregation and microglia activation were observed at 4 weeks old. Gliosis of astrocytes and Bergmann glia, pERK, Bax/Bcl2 ratio, and caspase-3 were significantly increased in the 6-week-old SCA17 mouse cerebellum. In addition to the polyglutamine-protein aggregation in Purkinje cells caused apoptosis cell-autonomously, a significant body of evidence have shown that ERK pathways involves in neuronal apoptosis. Our study showed that the activation of ERK in the astrocytes and Bergmann glia was identified as preceding motor deficits, which suggest the elevated gliosis by ERK activation may contribute to neuronal apoptosis in SCA17 mice.


Assuntos
Cerebelo/metabolismo , Gliose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Calcineurina/metabolismo , Morte Celular/fisiologia , Cerebelo/patologia , Modelos Animais de Doenças , Gliose/genética , Gliose/patologia , Camundongos , Camundongos Transgênicos , Destreza Motora/fisiologia , Fenótipo , Fosforilação , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Proteína de Ligação a TATA-Box/genética
4.
Polymers (Basel) ; 10(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966546

RESUMO

In this work, a smart copolymer, Poly(nipam-co-IAM) was synthesized by copolymerization of N-isopropylacrylamide (nipam) and itaconamic acid (IAM) through reversible addition-fragmentation chain-transfer (RAFT) polymerization. Poly(nipam-co-IAM) has been studied previously synthesized via radical polymerization without stereo-control, and this work used cumyl dithiobenzoate and Ytterbium(III) trifluoromethanesulfonate as RAFT and stereo-control agents, respectively. The stereo-control result in this work shows that tacticity affects the lower critical solution temperature (LCST) and/or the profile of phase separation of Poly(nipam-co-IAM). In the pH 7 and pH 10 buffer solutions, the P(nipam-co-IAM) copolymer solutions showed soluble⁻insoluble⁻soluble transitions, i.e., both LCST and upper critical solution temperature (UCST) transitions, which had not been found previously, and the insoluble to soluble transition (redissolved behavior) occurred at a relatively low temperature. The insoluble to soluble transition of P(nipam-co-IAM) in alkaline solution occurred at a temperature of less than 45 °C. However, the redissolved behavior of P(nipam-co-IAM) was found only in the pH 7 and pH 10 buffer solutions and this redissolved behavior was more prominent for the atactic copolymers than in the isotactic-rich ones. In addition, the LCST results under our experimental range of meso content did not show a significant difference between the isotactic-rich and the atactic P(nipam-co-IAM). Further study on the soluble-insoluble-soluble (S-I-S) transition and the application thereof for P(nipam-co-IAM) copolymers will be conducted.

5.
Brain Res ; 1639: 132-48, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26972528

RESUMO

Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Fármacos Neuroprotetores/farmacologia , Sintomas Prodrômicos , Ataxias Espinocerebelares/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia
6.
PLoS One ; 6(8): e22924, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850243

RESUMO

We investigated the therapeutic potential of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in Huntington's disease (HD) mouse models. Ten weeks after intrastriatal injection of quinolinic acid (QA), mice that received hBM-MSC transplantation showed a significant reduction in motor function impairment and increased survival rate. Transplanted hBM-MSCs were capable of survival, and inducing neural proliferation and differentiation in the QA-lesioned striatum. In addition, the transplanted hBM-MSCs induced microglia, neuroblasts and bone marrow-derived cells to migrate into the QA-lesioned region. Similar results were obtained in R6/2-J2, a genetically-modified animal model of HD, except for the improvement of motor function. After hBM-MSC transplantation, the transplanted hBM-MSCs may integrate with the host cells and increase the levels of laminin, Von Willebrand Factor (VWF), stromal cell-derived factor-1 (SDF-1), and the SDF-1 receptor Cxcr4. The p-Erk1/2 expression was increased while Bax and caspase-3 levels were decreased after hBM-MSC transplantation suggesting that the reduced level of apoptosis after hBM-MSC transplantation was of benefit to the QA-lesioned mice. Our data suggest that hBM-MSCs have neural differentiation improvement potential, neurotrophic support capability and an anti-apoptotic effect, and may be a feasible candidate for HD therapy.


Assuntos
Doença de Huntington/terapia , Células-Tronco Mesenquimais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Transplante de Medula Óssea , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Ácido Quinolínico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA