Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675267

RESUMO

A prospective source of stem cells for bone tissue engineering is adipose-derived stem cells (ADSCs), and BMP-2 has been proven to be highly effective in promoting the osteogenic differentiation of stem cells. Rarely has research been conducted on the impact of lactoferrin (LF) on ADSCs' osteogenic differentiation. As such, in this study, we examined the effects of LF and BMP-2 to assess the ability of LF to stimulate ADSCs' osteogenic differentiation. The osteogenic medium was supplemented with the LF at the following concentrations to culture ADSCs: 0, 10, 20, 50, 100, and 500 µg/mL. The Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of ADSCs. Calcium deposition, alkaline phosphatase (ALP) staining, real-time polymerase chain reaction (RT-PCR), and an ALP activity assay were used to establish osteogenic differentiation. RNA sequencing analysis was carried out to investigate the mechanism of LF boosting the osteogenic development of ADSCs. In the concentration range of 0-100 µg/mL, LF concentration-dependently increased the proliferative vitality and osteogenic differentiation of ADSCs. At a dose of 500 µg/mL, LF sped up and enhanced differentiation, but inhibited ADSCs from proliferating. LF (100 and 500 µg/mL) produced more substantial osteoinductive effects than BMP-2. The PI3 kinase/AKT (PI3K/AKT) and IGF-R1 signaling pathways were significantly activated in LF-treated ADSCs. The in vitro study results showed that LF could effectively promote osteogenic differentiation of ADSCs by activating the PI3K/AKT and IGF-R1 pathways. In our in vitro investigation, an LF concentration of 100 µg/mL was optimal for osteoinduction and proliferation. Our study suggests that LF is an attractive alternative to BMP-2 in bone tissue engineering. As a bioactive molecule capable of inducing adipose stem cells to form osteoblasts, LF is expected to be clinically used in combination with biomaterials as an innovative molecular and cellular therapy to promote bone repair.


Assuntos
Tecido Adiposo , Osteogênese , Tecido Adiposo/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estudos Prospectivos , Células Cultivadas , Células-Tronco/metabolismo , Diferenciação Celular
2.
Biochem Biophys Res Commun ; 567: 118-124, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34147710

RESUMO

Osteosarcoma is the most common primary orthopedic malignant bone tumor in adolescents. However, the traditional neoadjuvant chemotherapy regimen has reached the bottleneck. TPZ is a hypoxic prodrug that has a powerful anti-tumor effect in the hypoxic microenvironment of tumors. And ferroptosis is a newly discovered cell death in 2012, and ferroptosis inducers have been used in anti-tumor therapy research in recent decades. Though, the role of TPZ and ferroptosis in osteosarcoma remains unclear. The aim of this study was to investigate the role of TPZ in osteosarcoma and the specific mechanism. MTT assay showed the extraordinary inhibition of TPZ on three osteosarcoma cells under hypoxia. And fluorescence of Fe2+ staining was enhanced by TPZ. Western blotting showed decreased expression of SLC7A11 and GPX4. Lipid peroxidation was confirmed by MDA assay and C11 BODIPY 581/591 staining. SLC7A11 overexpression could restored the proliferation and migration abilities inhibited by TPZ. Thus, we for the first time demonstrated that TPZ could inhibit the proliferation and migration of osteosarcoma cells, and induce ferroptosis in part through inhibiting SLC7A11.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Tirapazamina/farmacologia , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Humanos , Osteossarcoma/metabolismo
4.
Anim Biosci ; 37(7): 1263-1276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754853

RESUMO

OBJECTIVE: Pine needles are rich in many nutrients and exhibit antibacterial and antioxidant biological activities; however, the effects of different production methods of pine needle additives on the growth performance and intestinal flora of broiler chickens are not known. METHODS: Normal diets were supplemented with pine needle fermentation juice (PNF), pine needle soaking juice (PNS), or pine needle powder (PNP), and the associated effects on growth performance, relative organ weights, intestinal development, intestinal histological morphology, intestinal flora, meat quality, and serum indicators in broiler chickens were observed. RESULTS: The results showed that PNF, PNS, and PNP all significantly improved feed utilisation and promoted the growth and development of broilers. All three additives also significantly improved the structure of the intestinal flora, specifically increasing the diversity of bacteria; increasing the abundance of beneficial bacteria, such as Faecalibacterium, Rikenella, and Blautia; and decreasing the abundance of harmful bacteria, such as Staphylococcus. The antioxidant properties of pine needles were also found to intensify lipid metabolic reactions in the blood, thus leading to lower triglycerides and total cholesterol. Meanwhile, high doses of PNF reduced jejunum and ileum weights and also increased meat yellowness. Lastly, none of PNF, PNS, or PNP had an effect on relative organ weights or intestinal histological morphology. CONCLUSION: The addition of pine needles to the diet of broiler chickens can effectively promote their growth performance as well as improve their intestinal flora and serum status without side effects; in particular, the dose of 0.2% of either PNF and PNS is expected to have the capacity to replace growth-promoting antibiotics as diet additives.

5.
Front Cell Dev Biol ; 11: 1106279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743417

RESUMO

Background: The clinical applications of stromal vascular fraction (SVF) therapy for osteoarthritis (OA) have attracted academic and clinical attention. However, data of the effects of stromal vascular fraction therapy on regeneration of degenerated cartilage are limited in the literature. Meanwhile, there is a great need for a simple and non-invasive evaluation method to analyze the changes of joint cartilage qualitatively and quantitatively in clinical trials. This study entitled "stromal vascular fraction Therapy for Human Knee Osteoarthritis" was registered in ClinicalTrial.gov # NCT05019378. Materials and Methods: We designed and conducted a single center, open labeled clinical phase I/II study, and 6 osteoarthritis patients with both knee cartilage defect I-II were enrolled in this study. The two knees of each patient were randomly assigned to autologous stromal vascular fraction treatment group or non-treatment control group to evaluate the safety and therapeutic effect of stromal vascular fraction therapy for human knee osteoarthritis. We have also established a novel protocol to provide 3D MRI imaging for human knee cartilage enabling us to qualitatively and quantitatively evaluate cartilage degeneration and regeneration in this study. Results: The qualitative and quantitative evaluation of 3D Magnetic Resonance Imaging (MRI) imaging of knee cartilage demonstrated that the stromal vascular fraction therapy reduced the cartilage defects; and significant increase of cartilage value both in defect cartilage area and whole cartilage area of treated group and significant increase of thickness and area of both femoral and tibia cartilage in vertical sections of the stromal vascular fraction treated Group at 12 and 24 W post treatment in cartilage defect I-II osteoarthritis patients. Conclusion: This clinical phase I/II study indicated that stromal vascular fraction therapy is a safe clinical procedure and provided evidence that the stromal vascular fraction therapy significantly facilitated cartilage regeneration, opening the opportunity to a phase III trial investigating authentic efficacy of the procedure. This study is the first qualitative and quantitative evaluation of the efficacy of autologous stromal vascular fraction cellular therapy on cartilage regeneration. Through early and definite diagnosis of knee osteoarthritis patients, and providing safe and efficient therapy to facilitate cartilage regeneration, we will be able to control or reverse cartilage degeneration and completely change the epidemiology of osteoarthritis worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA