Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14357-14367, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726589

RESUMO

Introducing dynamic behavior into periodic frameworks has borne fruit in the form of flexible porous crystals. The detailed molecular design of frameworks in order to control their collective dynamics is of particular interest, for example, to achieve stimulus-induced behavior. Herein, by varying the degree of rigidity of ditopic pillar linkers, two isostructural flexible metal-organic frameworks (MOFs) with common rigid supermolecular building bilayers were constructed. The subtle substitution of single (in bibenzyl-4,4'-dicarboxylic acid; H2BBDC) with double (in 4,4'-stilbenedicarboxylic acid; H2SDC) C-C bonds in pillared linkers led to markedly different flexible behavior of these two MOFs. Upon the removal of guest molecules, both frameworks clearly show reversible single-crystal-to-single-crystal transformations involving the cis-trans conformation change and a resulting swing of the corresponding pillar linkers, which gives rise to Flex-Cd-MOF-1a and Flex-Cd-MOF-2a, respectively. Strikingly, a more favorable gas-induced dynamic behavior in Flex-Cd-MOF-2a was verified in detail by stepwise C3H6/C3H8 sorption isotherms and the corresponding in situ powder X-ray diffraction experiments. These insights are strongly supported by molecular modeling studies on the sorption mechanism that explores the sorption landscape. Furthermore, a consistency between the macroscopic elasticity and microscopic flexibility of Flex-Cd-MOF-2 was observed. This work fuels a growing interest in developing MOFs with desired chemomechanical functions and presents detailed insights into the origins of flexible MOFs.

2.
J Neurophysiol ; 131(6): 1115-1125, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690999

RESUMO

The exact etiology of Parkinson's disease (PD), a degenerative disease of the central nervous system, is unclear. It is currently believed that its main pathological basis is a decrease in dopamine concentration in the striatum of the brain. Although many researchers have previously focused on the critical role of the immune response in PD, there has been a lack of valid genetic evidence for a causal association between specific immune cell traits and phenotypes and PD. We employed Mendelian randomization (MR) as an analytical method to effectively assess genetic associations between exposure and outcome. Based on the largest Genome-Wide Association Study (GWAS) dataset to date, causal associations between multiple immune cell phenotypes and PD were validly assessed, controlling for confounding factors by using single-nucleotide polymorphisms (SNPs), which are genetic instrumental variables that are randomly assigned and not subject to any causality. By testing 731 immune cell phenotypes and their association with PD, the results of inverse variance weighting (IVW) analysis suggested that after Bonferroni correction multiple immune cell phenotypes had no statistically significant effect on PD. It is worth mentioning that some phenotypes with unadjusted P values (P < 0.05), including 40 immune phenotypes, that were located on the cDC panel, the Treg panel, the Maturation stages of T cell panel, the TBNK panel, the B cell panel, the Myeloid cell panel, and the Monocyte panel were considered to have nominal associations with PD. In addition, PD could have an effect on certain immunophenotypes located on the Myeloid cell panel and the Monocyte panel; the specific immunophenotypic results and statistical analysis values are shown in the text. The results of sensitivity analyses suggested that none of these observed the presence of horizontal pleiotropy. Our study identified a close link between immune cells and PD, and the results of this study provide ideas for the study of the immune mechanism of PD and the exploration of effective therapeutic means.NEW & NOTEWORTHY In this study, based on the GWAS Immunophenotyping Database, a Mendelian randomization approach was used to assess the genetic causal associations between 731 immunophenotypes and traits and Parkinson's disease (PD), which not only provides a reference for the immune response mechanism of PD but also provides ideas for exploring the effective diagnosis and treatment of PD.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Parkinson , Fenótipo , Polimorfismo de Nucleotídeo Único , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Humanos
3.
Phys Rev Lett ; 132(21): 210202, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856248

RESUMO

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally, we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided device-independent context. These criteria serve as tools for identifying potential asymmetric dimensionality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we experimentally observe asymmetric structures of EPR steering in the C^{3}⊗C^{3} Hilbert space. Our Letter offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential applications in asymmetric high-dimensional quantum information tasks.

4.
Small ; 19(22): e2300821, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869658

RESUMO

The pore dimension and surface property directly dictate the transport of guests, endowing diverse gas selective adsorptions to porous materials. It is highly relevant to construct metal-organic frameworks (MOFs) with designable functional groups that can achieve feasible pore regulation to improve their separation performances. However, the role of functionalization in different positions or degrees within framework on the separation of light hydrocarbon has rarely been emphasized. In this context, four isoreticular MOFs (TKL-104-107) bearing dissimilar fluorination are rationally screened out and afforded intriguing differences in the adsorption behavior of C2 H6 and C2 H4 . Ortho-fluoridation of carboxyl allows TKL-105-107 to exhibit enhanced structural stabilities, impressive C2 H6 adsorption capacities (>125 cm3 g-1 ) and desirable inverse selectivities (C2 H6 over C2 H4 ). The more modified ortho-fluorine group and meta-fluorine group of carboxyl have improved the C2 H6 /C2 H4 selectivity and adsorption capacity, respectively, and the C2 H6 /C2 H4 separation potential can be well optimized via linker fine-fluorination. Meanwhile, dynamic breakthrough experiments proved that TKL-105-107 can be used as highly efficient C2 H6 -selective adsorbents for C2 H4 purification. This work highlights that the purposeful functionalization of pore surfaces facilitates the assembly of highly efficient MOF adsorbents for specific gas separation.

5.
Nat Mater ; 21(6): 689-695, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484330

RESUMO

In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.


Assuntos
Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Adsorção , Benzeno/química , Gases
6.
Inorg Chem ; 62(17): 6751-6758, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083265

RESUMO

Metal-organic frameworks (MOFs) have been recognized as a potential platform for the development of tunable luminophores owing to their highly modulable structures and components. Herein, two MOF luminophores based on Cd(II) ions, 1,3,5-tri(4-pyridinyl)benzene (TPB), and 1,4-dicarboxybenzene (H2BDC) were constructed. The directed assembly of the metal ions and organic linkers results in [Cd2(BDC)2(TPB)(H2O)]·x(solvent) (MOF-1) featuring TPB-based blue fluorescence centered at 425 nm. By introducing anthracene as the structure directing agent (SDA) for assembly regulation, [Cd2(BDC)(TPB)2(NO3)2]·x(solvent) (MOF-2) was obtained, which reveals anthracene feeding-dependent high tunable emission in the 517-650 nm range. Detailed components, photophysical properties, and structural characteristics investigations of MOF-2 indicate the TPB and NO3- interactions as the origin of its redshifted emission compared with that of MOF-1. Furthermore, the fluorescence of MOF-2 was found to be regulatable by the anthracene feeding based on the SDA-determined crystallinity of the crystalline sample. All these results provided a unique example of the structural and fluorescence regulation of MOF luminophores.

7.
Angew Chem Int Ed Engl ; 62(32): e202303262, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259616

RESUMO

Highly adjustable photonic modules were constructed based on the heterostructures crystals of a new series of donor-acceptor metal-organic framework (D-A MOF) featuring highly tunable thermally activated delayed fluorescence (TADF). By introducing N-phenylcarbazole and derivatives as donor guests into the acceptor host NKU-111, highly tunable through-space charge transfer based TADF could be achieved through the engineering of heavy atom effect, which result in modulatable emission wavelength (540 to 600 nm) and enhanced quantum yield (up to 30.86 %). Furthermore, by rationally integrating the D-A MOFs with distinctive emissions, rod-like heterostructures crystals featuring excitation position dependent tip emissions in wide wavelength range (495 to 598 nm) could be fabricated, which could serve as highly potential photonic modules for photonic circuit applications.

8.
BMC Cancer ; 22(1): 991, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115953

RESUMO

BACKGROUND: Colorectal cancer is the third most common cause of death among cancers in the world. Although improvements in various treatments have greatly improved the survival time of colorectal cancer patients, since colorectal cancer is often at an advanced stage when diagnosed, the prognosis of patients is still very poor. Since the ceRNA regulatory network was proposed in 2011, it has greatly promoted the study of the molecular mechanism of colorectal cancer occurrence and development. OBJECTIVE: Exploring the new molecular mechanism of colorectal cancer occurrence and development and providing new targets for the diagnosis and treatment of colorectal cancer. METHOD: We analyzed the RNA-seq data of CRC from TCGA, such as differential expression analysis, weighted gene co-expression network analysis (WGCNA) and construction of ceRNA regulatory network. RESULTS: We constructed a ceRNA network using RNA-seq data of CRC from TCGA. In the ceRNA regulatory network, 19 hub molecules with significant prognostic effects were ultimately identified, including 8 lncRNAs, 2 mRNAs and 9 miRNAs. These hub molecules constitute the lncRNA-miRNA, miRNA-mRNA or lncRNA-miRNA-mRNA axis. CONCLUSION: In this article, some new ceRNA regulatory axes have been discovered, which may potentially disclose new molecular mechanisms for the occurrence and development of colorectal cancer, thereby providing an important blueprint for the treatment and prognosis assessment of CRC patients.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Biomarcadores , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Inorg Chem ; 61(15): 5800-5812, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35385648

RESUMO

The hierarchical porous metal-organic framework (HP-MOF) has emerged as a hot topic in porous materials in consideration of their advantages in storage capacity and catalysis performance. Herein, we report the construction and property investigation of a series of HP-MOFs. A series of isoreticular microporous MOFs featuring the pacs topology network based on 2,4,6-tris(4-pyridyl)-1,3,5-triazine and different carboxylic acid ligands are found to be potential precursors to construct HP-MOFs. Through the decarboxylation of carboxylate ligands at high temperatures, a hierarchical porous structure could be obtained with the reservation of a crystalline framework. The formation of hierarchical pores is highly dependent on the structural and component nature (carboxylate ligands and metal centers) of the pristine MOF and the pyrolysis conditions (temperature and treatment time), indicating the highly tunable hierarchical pore characteristic of the HP-MOFs. By taking advantage of the increased pore volume and more exposed activation sites, the HP-MOFs reveal enhanced anionic dye adsorption capacity (800 mg·g-1 for Congo red and 140 mg·g-1 for methyl blue) and catalytic activity toward electrocatalytic oxygen reduction reaction (overpotential of 0.302 V at a current density of 10 mA·cm-2, 51 mV lower than that of the pristine MOF).

10.
Environ Res ; 211: 113075, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35271831

RESUMO

Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Bactérias/metabolismo , Bovinos , China , Rios , Solo , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
11.
Anesth Analg ; 134(2): 419-431, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889823

RESUMO

BACKGROUND: Intestinal ischemia/reperfusion (I/R) challenge often results in gut barrier dysfunction and induces distant organ injury. Dexmedetomidine has been shown to protect intestinal epithelial barrier against I/R attack. The present study aims to investigate the degree to which intestinal I/R attack will contribute to gut-vascular barrier (GVB) damage, and to examine the ability of dexmedetomidine to minimize GVB and liver injuries in mice. METHODS: In vivo, intestinal ischemic challenge was induced in mice by clamping the superior mesenteric artery for 45 minutes. After clamping, the mice were subjected to reperfusion for either 2, 4, 6, or 12 hours. Intraperitoneal injection of dexmedetomidine 15, 20, or 25 µg·kg-1 was performed intermittently at the phase of reperfusion. For the in vitro experiments, the challenge of oxygen-glucose deprivation/reoxygenation (OGD/R) was established in cultured vascular endothelial cells, and dexmedetomidine (1 nM) was used to treat the cells for 24 hours. Moreover, in vivo and in vitro, SKL2001 (a specific agonist of ß-catenin) or XAV939 (a specific inhibitor of ß-catenin) was applied to determine the role of ß-catenin in the impacts provided by dexmedetomidine. RESULTS: The attack of intestinal I/R induced GVB damage. The greatest level of damage was observed at 4 hours after intestinal reperfusion. There was a significant increase in plasmalemma vesicle-associated protein-1 (PV1, a specific biomarker for endothelial permeability) expression (5.477 ± 0.718 vs 1.000 ± 0.149; P < .001), and increased translocation of intestinal macromolecules and bacteria to blood and liver tissues was detected (all P < .001). Liver damages were observed. There were significant increases in histopathological scores, serum parameters, and inflammatory factors (all P < .001). Dexmedetomidine 20 µg·kg-1 reduced PV1 expression (0.466 ± 0.072 vs 1.000 ± 0.098; P < .001) and subsequent liver damages (all P < .01). In vitro, dexmedetomidine significantly improved vascular endothelial cell survival (79.387 ± 6.447% vs 50.535 ± 1.766%; P < .001) and increased the productions of tight junction protein and adherent junction protein (all P < .01) following OGD/R. Importantly, in cultured cells and in mice, ß-catenin expression significantly decreased (both P < .001) following challenge. Dexmedetomidine or SKL2001 upregulated ß-catenin expression and produced protective effects (all P < .01). However, XAV939 completely eliminated the protective effects of dexmedetomidine on GVB (all P < .001). CONCLUSIONS: The disruption of GVB occurred following intestinal I/R. Dexmedetomidine alleviated I/R-induced GVB impairment and subsequent liver damage.


Assuntos
Analgésicos não Narcóticos/administração & dosagem , Permeabilidade Capilar/efeitos dos fármacos , Dexmedetomidina/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Permeabilidade Capilar/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Injeções Intraperitoneais , Mucosa Intestinal/metabolismo , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
12.
Inorg Chem ; 60(4): 2749-2755, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33535744

RESUMO

Storage and purification of light hydrocarbons are very meaningful for their high-purity requirements and safety utilization in the fields of industry and clean energy. It is a simple and effective way to achieve this goal utilizing the physical adsorption properties of stable porous metal-organic frameworks (MOFs). In this work, a stable self-interpenetrated three-dimensional MOF with a new 3,4-connected topology, {[Zn2(tpda)2(4,4'-bpy)]·4DMF}n (NKM-101; H2tpda = 4,4'-[4-(4H-1,2,4-triazol-4-yl)phenyl]dibenzoic acid, 4,4'-bpy = 4,4'-bipyridine, and DMF = N,N-dimethylformamide), has been successfully constructed based on a triazole-carboxyl ligand. The dense functional active sites existing on the inner walls of one-dimensional channels of NKM-101 are beneficial to enhancement of the binding affinities between the framework and specific molecules (CO2, C2-C4). Therefore, the selective adsorption and separation performance of the material on CO2/CH4 and C2-C4/CH4 are effectively improved. In addition, NKM-101 also exhibits excellent water stability, making it possible to be a practical material for the storage and purification of light hydrocarbons.

13.
Inorg Chem ; 60(7): 5122-5130, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33769042

RESUMO

The construction and modulation of hierarchical pore structure in metal-organic frameworks (MOFs) has become a hot topic owing to the advantages of hierarchical pore MOFs (HP-MOFs) in matter storage and mass transfer related applications. Herein, we report the engineering of crystalline defect in a bimetallic MOF for the construction and tuning of HP-MOF. A microporous MOF system showing metal-center-dependent water stability, namely, {[M3F(bdc)3 tpt] (solvents)}n (M = Zn2+ and Ni2+, H2bdc = 1,4-benzenedicarboxylic acid, tpt = 2,4,6-tris(4-pyridyl)triazine), was utilized as a platform for the construction of HP-MOF. By tuning the Zn2+/Ni2+ ratio in the reactant, a bimetallic MOF with a highly tunable Zn2+/Ni2+ ratio could be obtained. The relatively labile Zn2+-based coordination bonding in the bimetallic MOF could be readily and targeted broken through water treatment for the engineering of crystalline defects-based hierarchical pore structure. The resultant HP-MOF reveals a dramatically increased pore volume with the presence of mesopore and macropore. In addition, the anionic framework of HP-MOF could be utilized for the selective adsorption of a cationic dye methylene blue, and a relatively high capacity (250 mg·g-1, five times compared with the pristine microporous MOF) could be achieved.

14.
Inorg Chem ; 59(13): 9005-9013, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32526144

RESUMO

In spite of the attractive potential application of the dynamic behavior and defect of metal-organic framework (MOF), the achievement of these features is a challenging goal in the MOF research field. Herein, we report a Co(II) MOF, namely, [Co3(L)2(4-PTZ)2(H2O)2]n·solvent (H2L = 5-(isonicotinamido)isophthalic acid, 4-PTZ = 5-(4-pyridyl)-1H-tetrazole), that features dynamic structural transformation behaviors. By varying the coordination configuration of metal center through the removal of coordinated water molecules, the porous compound could undergo structural transformation to give a new crystalline phase with larger pore dimension. Moreover, the new phase features a mesoporous structure originating from the spatial defect that formed with the transformation process, which indicates that the modulation of dynamic behavior of the MOF could be a potential method for the engineering of a spatial defect. In addition, the gas sorption investigation results reveal that the new phase has enhanced selectivity for CO2/N2, CO2/CH4, and C2H2/C2H4 systems compared with that of the pristine phase, suggesting the potential of spatial defect engineering for the tuning of MOF gas sorption properties.

15.
J Am Chem Soc ; 141(44): 17703-17712, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603672

RESUMO

Physical adsorption of gas molecules in microporous materials is an exothermic process, with desorption entropy driving a decrease in uptake with temperature. Enhanced gas sorption with increasing temperature is rare in porous materials and is indicative of sorbate initiated structural change. Here, sorption of C2H6, C3H6, and C3H8 in a flexible microporous metal-organic framework (MOF) {Cu(FPBDC)]·DMF}n (NKU-FlexMOF-1) (H2FPBDC = 5-(5-fluoropyridin-3-yl)-1,3-benzenedicarboxylic acid) that increases with rising temperature over a practically useful temperature and pressure range is reported along with other small molecule and hydrocarbon sorption isotherms. Single X-ray diffraction studies, temperature-dependent gas sorption isotherms, in situ and variable temperature powder X-ray diffraction experiments, and electronic structure calculations were performed to characterize the conformation-dependent sorption behavior in NKU-FlexMOF-1. In total, the data supports that the atypical sorption behavior is a result of loading-dependent structural changes in the flexible framework of NKU-FlexMOF-1 induced by sorbate-specific guest-framework interactions. The sorbates cause subtle adaptations of the framework distinct to each sorbate providing an induced-fit separation mechanism to resolve chemically similar hydrocarbons through highly specific sorbate-sorbent interactions. The relevant intermolecular contacts are shown to be predominantly repulsion and dispersion interactions. NKU-FlexMOF-1 is also found to be stable in aqueous solutions including toleration of pH changes. These experiments demonstrate the potential of this flexible microporous MOF for cost and energy efficient industrial hydrocarbon separation and purification processes. The efficacy for the separation of C3H6/C3H8 mixtures is explicitly demonstrated using NKU-FlexMOF-1a (i.e., activated NKU-FlexMOF-1) for a particular useful temperature range.

16.
J Am Chem Soc ; 141(23): 9408-9414, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117669

RESUMO

Soft porous crystals (SPCs) that exhibit stimuli-responsive dynamic sorption behavior are attracting interest for gas storage/separation applications. However, the design and synthesis of SPCs is challenging. Herein, we report a new type of SPC based on a [2 + 3] imide-based organic cage (NKPOC-1) and find that it exhibits guest-induced breathing behavior. Various gases were found to induce activated NKPOC-1 crystals to reversibly switch from a "closed" nonporous phase (α) to two porous "open" phases (ß and γ). The net effect is gate-opening behavior induced by CO2 and C3 hydrocarbons. Interestingly, NKPOC-1-α selectively adsorbs propyne over propylene and propane under ambient conditions. Thus, NKPOC-1-α has the potential to separate binary and ternary C3 hydrocarbon mixtures, and the performance was subsequently verified by fixed bed column breakthrough experiments. In addition, molecular dynamics calculations and in situ X-ray diffraction experiments indicate that the gate-opening effect is accompanied by reversible structural transformations. The adsorption energies from molecular dynamics simulations aid are consistent with the experimentally observed selective adsorption phenomena. The understanding gained from this study of NKPOC-1 supports the further development of SPCs for applications in gas separation/storage because SPCs do not inherently suffer from the recyclability problems often encountered with rigid materials.

17.
Small ; 15(22): e1900426, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977961

RESUMO

Metal-organic frameworks (MOFs) can be fine-tuned to boost sorbent-sorbate interactions in order to improve gas sorption and separation performance, but the design of MOFs with ideal structural features for gas separation applications remains a challenge. Herein it is reported that unsaturated alkali metal sites can be immobilized in MOFs through a tetrazole based motif and that gas affinity can thereby be boosted. In the prototypal MOF of this type-NKU-521 (NKU denotes Nankai University), K+ cations are effectively embedded in a trinuclear Co2+ -tetrazole coordination motif. The embedded K+ sites are exposed to the pores of NKU-521 through water removal, and the isosteric heat (Qst ) for CO2 is boosted to 41 kJ mol-1 . The nature of the binding site is validated by molecular simulations and structural characterization. The K+ cations in effect serve as gas traps and boost the CO2 -framework affinity, as measured by the Qst , by 24%. In addition, the impact of unsaturated alkali metal sites upon the separation of hydrocarbons is evaluated for the first time in MOFs using ideal adsorbed solution theory (IAST) calculations and column breakthrough experiments. The results reveal that the presence of exposed K+ sites benefits gas sorption and hydrocarbon separation performances of this MOF.

18.
Chemistry ; 25(8): 1901-1905, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30618074

RESUMO

A new metal-organic framework (MOF), [Zn6 L4 (Me2 NH2 + )4 ⋅3 H2 O] (1) was constructed based on [9, 9'-biscarbazole]-3, 3', 6, 6'-tetracarboxylic acid (H4 L) and Zn2+ ions. The porous framework and intense blue fluorescence of the MOF based on the biscarbazole moiety of the ligand could facilitate efficient host to guest energy transfer, which makes it an ideal platform for the tuning of luminescence.

19.
Angew Chem Int Ed Engl ; 58(39): 13890-13896, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31231920

RESUMO

Photonic materials use photons as information carriers and offer the potential for unprecedented applications in optical and optoelectronic devices. In this study, we introduce a new strategy for photonic materials using metal-organic frameworks (MOFs) as the host for the rational construction of donor-acceptor (D-A) heterostructure crystals. We have engineered a rich library of heterostructure crystals using the MOF NKU-111 as a host. NKU-111 is based upon an electron-deficient tridentate ligand (acceptor) that can bind to various electron-rich guests (donors). The resulting heterocrystals exhibit spatially segregated multi-color emission resulting from the guest-dependent charge-transfer (CT) emission. Spatially effective mono-directional energy transfer results from tuning the energy gradient between adjacent domains through the selection of donor guest molecules, which suggests potential applications in integrated optical circuit devices, for example, photonic diodes, on-chip signal processing, optical logic gates.

20.
Inorg Chem ; 57(23): 14476-14479, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30427185

RESUMO

CNFs@Co-CoO (CNFs = carbon nanofibers) composite showing "gypsophila"-like morphology was designed and prepared for the first time with in situ grown PAN@ZIF-67 (PAN = polyacrylonitrile) as the precursor. Benefiting from its unique morphology, hierarchically porous structure, and high-activity Co-CoO catalyst centers, the composite shows a better electrochemical performance than pure CNFs as a cathode for Li-O2 batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA