Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Mol Biol ; 94(3): 319-332, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28405784

RESUMO

The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3'UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.


Assuntos
Amaranthus/metabolismo , Besouros/enzimologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , alfa-Amilases/antagonistas & inibidores , Achyranthes/metabolismo , Sequência de Aminoácidos , Animais , Celosia/metabolismo , Clonagem Molecular , Modelos Moleculares , Proteínas de Plantas/genética , Conformação Proteica , Transporte Proteico
2.
Biochim Biophys Acta ; 1850(9): 1719-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25907330

RESUMO

BACKGROUND: Helicoverpa armigera (Lepidoptera) feeds on various plants using diverse digestive enzymes as one of the survival tool-kit. The aim of the present study was to understand biochemical properties of recombinant α-amylases of H. armigera viz., HaAmy1 and HaAmy2. METHODS: The open reading frames of HaAmy1 and HaAmy2 were cloned in Pichia pastoris and expressed heterologously. Purified recombinant enzymes were characterized for their biochemical and biophysical attributes using established methods. RESULTS: Sequence alignment and homology modeling showed that HaAmy1 and HaAmy2 were conserved in their amino acid sequences and structures. HaAmy1 and HaAmy2 showed optimum activity at 60°C; however, they differed in their optimum pH. Furthermore, HaAmy2 showed higher affinity for starch and amylopectin whereas HaAmy1 had higher catalytic efficiency. HaAmy1 and HaAmy2 were inhibited to the same magnitude by a synthetic amylase inhibitor (acarbose) while wheat amylase inhibitor showed about 2-fold higher inhibition of HaAmy1 than HaAmy2 at pH7 while 6-fold difference at pH11. Interactions of HaAmy1 and HaAmy2 with wheat amylase inhibitor revealed 2:1 stoichiometric ratio and much more complex interaction with HaAmy1. CONCLUSIONS: The diversity of amylases in perspective of their biochemical and biophysical properties, and their differential interactions with amylase inhibitors signify the potential role of these enzymes in adaptation of H. armigera on diverse plant diets. GENERAL SIGNIFICANCE: Characterization of digestive enzymes of H. armigera provides the molecular basis for the polyphagous nature and thus could assist in designing future strategies for the insect control.


Assuntos
Lepidópteros/enzimologia , alfa-Amilases/química , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/fisiologia
3.
Front Plant Sci ; 14: 1139574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035083

RESUMO

Pratylenchus thornei is an economically important species of root-lesion nematode adversely affecting chickpea (Cicer arietinum) yields globally. Integration of resistant crops in farming systems is recognised as the most effective and sustainable management strategy for plant-parasitic nematodes. However, breeding for P. thornei resistance in chickpea is limited by the lack of genetic diversity. We deployed a genome-wide association approach to identify genomic regions and candidate genes associated with P. thornei resistance in 285 genetically diverse chickpea accessions. Chickpea accessions were phenotyped for P. thornei resistance in replicated glasshouse experiments performed for two years (2018 and 2020). Whole genome sequencing data comprising 492,849 SNPs were used to implement six multi-locus GWAS models. Fourteen chickpea genotypes were found to be resistant to P. thornei. Of the six multi-locus GWAS methods deployed, FASTmrMLM was found to be the best performing model. In all, 24 significant quantitative trait nucleotides (QTNs) were identified, of which 13 QTNs were associated with lower nematode population density and 11 QTNs with higher nematode population density. These QTNs were distributed across all of the chickpea chromosomes, except chromosome 8. We identified, receptor-linked kinases (RLKs) on chromosomes 1, 4 and 6, GDSL-like Lipase/Acylhydrolase on chromosome 3, Aspartic proteinase-like and Thaumatin-like protein on chromosome 4, AT-hook DNA-binding and HSPRO2 on chromosome 6 as candidate genes for P. thornei resistance in the chickpea reference set. New sources of P. thornei resistant genotypes were identified that can be harnessed into breeding programs and putative candidate P. thornei resistant genes were identified that can be explored further to develop molecular markers and accelerate the incorporation of improved P. thornei resistance into elite chickpea cultivars.

4.
Front Plant Sci ; 13: 1064059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082513

RESUMO

Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.

5.
Sci Rep ; 11(1): 17491, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471168

RESUMO

The root-lesion nematode, Pratylenchus thornei, is one of the major plant-parasitic nematode species causing significant yield losses in chickpea (Cicer arietinum). In order to identify the underlying mechanisms of resistance to P. thornei, the transcriptomes of control and inoculated roots of three chickpea genotypes viz. D05253 > F3TMWR2AB001 (resistant advanced breeding line), PBA HatTrick (moderately resistant cultivar), and Kyabra (susceptible cultivar) were studied at 20 and 50 days post inoculation using the RNA-seq approach. On analyzing the 633.3 million reads generated, 962 differentially expressed genes (DEGs) were identified. Comparative analysis revealed that the majority of DEGs upregulated in the resistant genotype were downregulated in the moderately resistant and susceptible genotypes. Transcription factor families WRKY and bZIP were uniquely expressed in the resistant genotype. The genes Cysteine-rich receptor-like protein kinase 10, Protein lifeguard-like, Protein detoxification, Bidirectional sugar transporter Sugars Will Eventually be Exported Transporters1 (SWEET1), and Subtilisin-like protease were found to play cross-functional roles in the resistant chickpea genotype against P. thornei. The identified candidate genes for resistance to P. thornei in chickpea can be explored further to develop markers and accelerate the introgression of P. thornei resistance into elite chickpea cultivars.


Assuntos
Cicer/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Tylenchoidea/fisiologia , Animais , Cicer/imunologia , Cicer/parasitologia , Resistência à Doença/imunologia , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia
6.
Front Plant Sci ; 10: 966, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428112

RESUMO

Plant-parasitic nematodes constrain chickpea (Cicer arietinum) production, with annual yield losses estimated to be 14% of total global production. Nematode species causing significant economic damage in chickpea include root-knot nematodes (Meloidogyne artiella, M. incognita, and M. javanica), cyst nematode (Heterodera ciceri), and root-lesion nematode (Pratylenchus thornei). Reduced functionality of roots from nematode infestation leads to water stress and nutrient deficiency, which in turn lead to poor plant growth and reduced yield. Integration of resistant crops with appropriate agronomic practices is recognized as the safest and most practical, economic and effective control strategy for plant-parasitic nematodes. However, breeding for resistance to plant-parasitic nematodes has numerous challenges that originate from the narrow genetic diversity of the C. arietinum cultigen. While levels of resistance to M. artiella, H. ciceri, and P. thornei have been identified in wild Cicer species that are superior to resistance levels in the C. arietinum cultigen, barriers to interspecific hybridization restrict the use of these crop wild relatives, as sources of nematode resistance. Wild Cicer species of the primary genepool, C. reticulatum and C. echinospermum, are the only species that have been used to introgress resistance genes into the C. arietinum cultigen. The availability of genomic resources, including genome sequence and re-sequence information, the chickpea reference set and mini-core collections, and new wild Cicer collections, provide unprecedented opportunities for chickpea improvement. This review surveys progress in the identification of novel genetic sources of nematode resistance in international germplasm collections and recommends genome-assisted breeding strategies to accelerate introgression of nematode resistance into elite chickpea cultivars.

8.
Insect Biochem Mol Biol ; 74: 1-11, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27132147

RESUMO

Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed.


Assuntos
Acarbose/farmacologia , Besouros/enzimologia , Besouros/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , DNA Complementar/genética , DNA Complementar/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Simulação de Acoplamento Molecular , Filogenia , Alinhamento de Sequência , alfa-Amilases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA