Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37991614

RESUMO

Tea, the major beverage worldwide, is one of the oldest commercial commodities traded from ancient times. Apart from many of its advantages, including health, socio-economic, climatic, and agro-ecological values, FAO has recognized that the tea value chain covering its growth in the field, processing and marketing, and finally, the hot cup at the user's hand needs to be made sustainable during all these stages. Tea generates a lot of waste in different forms in different stages of its growth and processing, and these wastes, if not managed properly, may cause environmental pollution. A planned utilization of these wastes as feedstocks for various processes can generate more income, create rural livelihood opportunities, help grow tea environmentally sustainable, avoid GHG emissions, and make a real contribution to SDGs. Thermochemical and biological conversion of tea wastes generates value-added products. This review provides an overview on the impacts of the tea wastes on the environment, tea waste valorization processes, and applications of value-added products. The application of value-added products for energy generation, wastewater treatment, soil conditioners, adsorbents, biofertilizers, food additives, dietary supplements, animal feed bioactive chemicals, dye, colourant, and phytochemicals has been reviewed. Further, the challenges in sustainable utilization of tea wastes and opportunities for commercial exploitation of value-added products from tea wastes have been reviewed.

2.
Bull Environ Contam Toxicol ; 89(2): 257-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22669336

RESUMO

Feasibility study carried out at the site prior to the full scale study showed that the introduced bacterial consortium effectively adapted to the local environment of the soil at bioremediation site. The soil samples were collected from the contaminated fields after treatment with bacterial consortium at different time intervals and analyzed by gas chromatography after extraction with hexane and toluene. At time zero (just before initiation of bioremediation), the concentration of total petroleum hydrocarbons in the soil (25-cm horizon) of plot A, B, C and D was 30.90 %, 18.80 %, 25.90 % and 29.90 % respectively, after 360 days of treatment with microbial consortia was reduced to 0.97 %, 1.0 %, 1.0 %, and 1.1 % respectively. Whereas, only 5 % degradation was observed in the control plot after 365 days (microbial consortium not applied).


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Poluição por Petróleo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa , Hexanos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Tolueno/metabolismo
3.
Bioengineering (Basel) ; 9(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36354528

RESUMO

Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle growing energy problems. Biodiesel has a similar composition and combustion properties to fossil diesel and thus can be directly used in internal combustion engines as an energy source at the commercial level. Since biodiesel produced using edible/non-edible crops raises concerns about food vs. fuel, high production cost, monocropping crisis, and unintended environmental effects, such as land utilization patterns, it is essential to explore new approaches, feedstock and technologies to advance the production of biodiesel and maintain its sustainability. Adopting bioengineering methods to produce biodiesel from various sources such as crop plants, yeast, algae, and plant-based waste is one of the recent technologies, which could act as a promising alternative for creating genuinely sustainable, technically feasible, and cost-competitive biodiesel. Advancements in genetic engineering have enhanced lipid production in cellulosic crops and it can be used for biodiesel generation. Bioengineering intervention to produce lipids/fat/oil (TGA) and further their chemical or enzymatic transesterification to accelerate biodiesel production has a great future. Additionally, the valorization of waste and adoption of the biorefinery concept for biodiesel production would make it eco-friendly, cost-effective, energy positive, sustainable and fit for commercialization. A life cycle assessment will not only provide a better understanding of the various approaches for biodiesel production and waste valorization in the biorefinery model to identify the best technique for the production of sustainable biodiesel, but also show a path to draw a new policy for the adoption and commercialization of biodiesel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA