Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurobiol Learn Mem ; 205: 107848, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865262

RESUMO

In the present studies, we assessed the effect of the 5-HT1A receptor (R) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on motor and exploratory behaviors, object and place recognition and dopamine transporter (DAT) and serotonin transporter (SERT) binding in the rat brain. In Experiment I, motor/exploratory behaviors were assessed in an open field after injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle for 30 min without previous habituation to the open field. In Experiment II, rats underwent a 5-min exploration trial in an open field with two identical objects. After injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle, rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Subsequently, N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]FP-CIT; 11 ± 4 MBq) was injected into the tail vein. Regional radioactivity accumulations were determined post mortem with a well counter. In both experiments, 8-OH-DPAT dose-dependently increased ambulation and exploratory head-shoulder motility, whereas rearing was dose-dependently decreased. In the test rial of Experiment II, there were no effects of 8-OH-DPAT on overall activity, sitting and grooming. 8-OH-DPAT dose-dependently impaired recognition of object and place. 8-OH-DPAT (3 mg/kg) increased DAT binding in the dorsal striatum relative to both vehicle and 0.1 mg/kg 8-OH-DPAT. Furthermore, in the ventral striatum, DAT binding was decreased after 3 mg/kg 8-OH-DPAT relative to vehicle. Findings indicate that motor/exploratory behaviors, memory for object and place and regional dopamine function may be modulated by the 5-HT1AR. Since, after 8-OH-DPAT, rats exhibited more horizontal and less (exploratory) vertical motor activity, while overall activity was not different between groups, it may be inferred, that the observed impairment of object recognition was not related to a decrease of motor activity as such, but to a decrease of intrinsic motivation, attention and/or awareness, which are relevant accessories of learning. Furthermore, the present findings on 8-OH-DPAT action indicate associations not only between motor/exploratory behavior and the recognition of object and place but also between the respective parameters and the levels of available DA in dorsal and ventral striatum.


Assuntos
Receptor 5-HT1A de Serotonina , Estriado Ventral , Ratos , Animais , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina , Agonistas do Receptor de Serotonina/farmacologia
2.
Cerebellum ; 20(6): 836-852, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33661502

RESUMO

Topographic organization of the cerebellum is largely segregated into the anterior and posterior lobes that represent its "motor" and "non-motor" functions, respectively. Although patients with damage to the anterior cerebellum often exhibit motor deficits, it remains unclear whether and how such an injury affects cognitive and social behaviors. To address this, we perturbed the activity of major anterior lobule IV/V in mice by either neurotoxic lesion or chemogenetic excitation of Purkinje cells in the cerebellar cortex. We found that both of the manipulations impaired motor coordination, but not general locomotion or anxiety-related behavior. The lesioned animals showed memory deficits in object recognition and social-associative recognition tests, which were confounded by a lack of exploration. Chemogenetic excitation of Purkinje cells disrupted the animals' social approach in a less-preferred context and social memory, without affecting their overall exploration and object-based memory. In a free social interaction test, the two groups exhibited less interaction with a stranger conspecific. Subsequent c-Fos imaging indicated that decreased neuronal activities in the medial prefrontal cortex, hippocampal dentate gyrus, parahippocampal cortices, and basolateral amygdala, as well as disorganized modular structures of the brain networks might underlie the reduced social interaction. These findings suggest that the anterior cerebellum plays an intricate role in processing motor, cognitive, and social functions.


Assuntos
Cerebelo , Animais , Ansiedade , Vermis Cerebelar , Córtex Cerebral , Humanos , Camundongos , Células de Purkinje
3.
Mol Psychiatry ; 25(9): 2017-2035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224722

RESUMO

Principal neurons encode information by varying their firing rate and patterns precisely fine-tuned through GABAergic interneurons. Dysregulation of inhibition can lead to neuropsychiatric disorders, yet little is known about the molecular basis underlying inhibitory control. Here, we find that excessive GABA release from basket cells (BCs) attenuates the firing frequency of Purkinje neurons (PNs) in the cerebellum of Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mice, a model of Fragile X Syndrome (FXS) with abrogated expression of the Fragile X Mental Retardation Protein (FMRP). This over-inhibition originates from increased excitability and Ca2+ transients in the presynaptic terminals, where Kv1.2 potassium channels are downregulated. By paired patch-clamp recordings, we further demonstrate that acutely introducing an N-terminal fragment of FMRP into BCs normalizes GABA release in the Fmr1-KO synapses. Conversely, direct injection of an inhibitory FMRP antibody into BCs, or membrane depolarization of BCs, enhances GABA release in the wild type synapses, leading to abnormal inhibitory transmission comparable to the Fmr1-KO neurons. We discover that the N-terminus of FMRP directly binds to a phosphorylated serine motif on the C-terminus of Kv1.2; and that loss of this interaction in BCs exaggerates GABA release, compromising the firing activity of PNs and thus the output from the cerebellar circuitry. An allosteric Kv1.2 agonist, docosahexaenoic acid, rectifies the dysregulated inhibition in vitro as well as acoustic startle reflex and social interaction in vivo of the Fmr1-KO mice. Our results unravel a novel molecular locus for targeted intervention of FXS and perhaps autism.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Transmissão Sináptica , Ácido gama-Aminobutírico
4.
Neurobiol Learn Mem ; 141: 72-77, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28384498

RESUMO

The interplay between medial prefrontal cortex (mPFC) and hippocampus, particularly the hippocampal CA3 area, is critical for episodic memory. To what extent the mPFC also interacts with the hippocampus CA1 subregion still requires elucidation. To investigate this issue, male rats received unilateral N-methyl-D-aspartate lesions of the mPFC together with unilateral lesions of the hippocampal CA1 area, either in the same (control) or in the opposite hemispheres (disconnection). They underwent an episodic-like memory test, combining what-where-when information, and separate tests for novel object preference (what), object place preference (where) and temporal order memory (when). Compared to controls, the disconnected mPFC-CA1 rats exhibited disrupted episodic-like memory with an impaired integration of the what-where-when elements. Both groups showed intact memories for what and when, while only the control group showed intact memory for where. These findings suggest that the functional interaction of the mPFC-CA1 circuit is crucial for the processing of episodic memory and, in particular, for the integration of the spatial memory component.


Assuntos
Região CA1 Hipocampal/fisiologia , Memória Episódica , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , N-Metilaspartato/toxicidade , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
5.
Neurobiol Learn Mem ; 146: 12-20, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107702

RESUMO

The Disrupted-in-Schizophrenia 1 (DISC1) gene has been associated with mental illnesses such as major depression and schizophrenia. The transgenic DISC1 (tgDISC1) rat, which overexpresses the human DISC1 gene, is known to exhibit deficient dopamine (DA) homeostasis. To ascertain whether the DISC1 gene also impacts cognitive functions, 14-15 months old male tgDISC1 rats and wild-type controls were subjected to the novel object preference (NOP) test and the object-based attention test (OBAT) in order to assess short-term memory (1 h), long-term memory (24 h), and attention. RESULTS: The tgDISC1 group exhibited intact short-term memory, but deficient long-term-memory in the NOP test and deficient attention-related behavior in the OBAT. In a different group of tgDISC1 rats, 3 mg/kg intranasally applied dopamine (IN-DA) or its vehicle was applied prior to the NOP or the OBAT test. IN-DA reversed cognitive deficits in both the NOP and OBAT tests. In a further cohort of tgDISC1 rats, post-mortem levels of DA, noradrenaline, serotonin and acetylcholine were determined in a variety of brain regions. The tgDISC1 group had less DA in the neostriatum, hippocampus and amygdala, less acetylcholine in neostriatum, nucleus accumbens, hippocampus, and amygdala, more serotonin in the nucleus accumbens, and less serotonin and noradrenaline in the amygdala. CONCLUSIONS: Our findings show that DISC1 overexpression and misassembly is associated with deficits in long-term memory and attention-related behavior. Since behavioral impairments in tgDISC1 rats were reversed by IN-DA, DA deficiency may be a major cause for the behavioral deficits expressed in this model.


Assuntos
Atenção , Comportamento Animal , Disfunção Cognitiva , Dopamina/deficiência , Dopamina/farmacologia , Memória de Longo Prazo , Memória de Curto Prazo , Proteínas do Tecido Nervoso/metabolismo , Administração Intranasal , Animais , Atenção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Dopamina/administração & dosagem , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
6.
Cereb Cortex ; 26(7): 3000-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26048953

RESUMO

We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time.


Assuntos
Região CA3 Hipocampal/metabolismo , Memória Episódica , Córtex Pré-Frontal/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , N-Metilaspartato/metabolismo , N-Metilaspartato/toxicidade , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurotransmissores/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Percepção do Tempo/efeitos dos fármacos , Percepção do Tempo/fisiologia
7.
Hippocampus ; 26(5): 633-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26501829

RESUMO

The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory.


Assuntos
Córtex Entorrinal/fisiologia , Memória Episódica , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico/fisiologia , Análise de Variância , Animais , Córtex Entorrinal/lesões , Agonistas de Aminoácidos Excitatórios/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Lateralidade Funcional/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , N-Metilaspartato/toxicidade , Vias Neurais/efeitos dos fármacos , Córtex Pré-Frontal/lesões , Ratos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia
8.
Neurobiol Learn Mem ; 130: 149-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26899993

RESUMO

We here explore the utility of a paradigm that allows the simultaneous assessment of memory for object (what) and object location (where) and their comparative predominance. Two identical objects are presented during a familiarity trial; during the test trial one of these is displaced, and a new object is presented in a familiar location. When tested 5 or 80min later, rats explored both the novel and the displaced objects more than two familiar stationary objects, indicating intact memory for both, object and place. When tested 24h later rats explored the novel object more than the displaced familiar one, suggesting that forgetting differently influenced object and place memory, with memory for object being more robust than memory for place. Animals that received post-trial administration of the neurokinin-3 receptor agonist senktide and were tested 24h later, now explored the novel and displaced objects equally, suggesting that the treatment prevented the selective decay of memory for location. Next, animals received NMDA lesions in either the perirhinal cortex or the hippocampus, which are hypothesized to be preferentially involved in memory for objects and memory for place, respectively. When tested 5 or 80min later, the perirhinal cortex lesion group explored the displaced object more, indicating relatively deficient object memory, while the hippocampal lesion led to the opposite pattern, demonstrating comparatively deficient place memory. These results suggest different preferential engagement of the perirhinal cortex and hippocampus in their processing of memory for object and place. This preference test lends itself to application in the comparison of selective lesions of neural sites and projection systems as well as to the assessment of possible preferential action of pharmacological agents on neurochemical processes that subserve object vs place learning.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Fragmentos de Peptídeos/farmacologia , Córtex Perirrinal/fisiologia , Receptores da Neurocinina-3/agonistas , Comportamento Espacial/fisiologia , Substância P/análogos & derivados , Animais , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , N-Metilaspartato/toxicidade , Córtex Perirrinal/efeitos dos fármacos , Ratos , Ratos Wistar , Comportamento Espacial/efeitos dos fármacos , Substância P/farmacologia
9.
Neurobiol Learn Mem ; 133: 185-195, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423520

RESUMO

The neurosteroid pregnenolone (PREG) has been shown to have memory-enhancing and anti-depressant action. The present study addresses the question of whether intranasally applied pregnenolone (IN-PREG) also has promnestic properties in the rat. We examined the effects of IN-PREG at doses of 0.187 and 0.373mg/kg on memory for objects and their location on learning and retention of escape in a water maze, and on behavior on the elevated plus maze. The main findings were: (a) Pre-trial, but not post-trial, administration of IN-PREG facilitated long-term memory in a novel object-preference test and a novel object-location preference test when tested 48h after dosing. (b) Over the duration of 5days of extinction trials, after learning to escape onto a hidden platform in a water maze, the animals treated with IN-PREG spent more time in searching for the absent platform, indicating either, or both, superior memory for the former position of the escape platform, or a higher resistance to extinction. (c) Administration of the anticholinergic, scopolamine, disrupted learning to escape from the water maze in the vehicle-treated group. The IN-PREG treated groups exhibited superior escape learning in comparison with vehicle controls, indicating that the treatment countered the scopolamine effect. IN-PREG treatment had no influence on behaviors on the elevated plus maze. Our results demonstrate that IN-PREG is behaviorally active with cognitive enhancing properties comparable to those known from studies employing systemic PREG administration.


Assuntos
Disfunção Cognitiva/prevenção & controle , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Pregnenolona/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Antagonistas Colinérgicos/administração & dosagem , Antagonistas Colinérgicos/farmacologia , Disfunção Cognitiva/induzido quimicamente , Masculino , Nootrópicos/administração & dosagem , Pregnenolona/administração & dosagem , Ratos , Ratos Wistar , Escopolamina/administração & dosagem , Escopolamina/farmacologia
10.
Neurobiol Learn Mem ; 114: 178-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972016

RESUMO

Senktide, a potent neurokinin-3 receptor (NK3-R) agonist, has been shown to have promnestic effects in adult and aged rodents and to facilitate episodic-like memory (ELM) in mice when administrated before the learning trial. In the present study we assessed the effects of senktide on memory consolidation by administering it post-trial (after the learning trial) in adult rats. We applied an ELM test, based on the integrated memory for object, place and temporal order, which we developed (Kart-Teke, de Souza Silva, Huston, & Dere, 2006). This test involves two learning trials and one test trial. We examined intervals of 1h and 23 h between the learning and test trials (experiment 1) in untreated animals and found that they exhibited intact ELM after a delay of 1 h, but not 23 h. In another test for ELM performed 7 days later, vehicle or senktide (0.2 mg/kg, s.c.) was applied immediately after the second learning trial and the test was conducted 23 h later (experiment 2). Senktide treatment recovered components of ELM (memory for place and object) compared with vehicle-treated animals. After one more week, vehicle or senktide (0.2 mg/kg, s.c.) was applied post-trial and the test conducted 6h later (experiment 3). The senktide-treated group exhibited intact ELM, unlike the vehicle-treated group. Finally, animals received post-trial treatment with either vehicle or SR142801, a selective NK3-R antagonist (6 mg/kg, i.p.), 1 min before senktide injection (0.2 mg/kg, s.c.) in the ELM paradigm and were tested 6h later (experiment 4). The vehicle+senktide group showed intact ELM, while the SR142801+senktide group did not. The results indicate that senktide facilitated the consolidation or the expression of ELM and that the senktide effect was NK3-R dependent.


Assuntos
Memória Episódica , Memória/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores da Neurocinina-3/agonistas , Substância P/análogos & derivados , Animais , Ratos , Ratos Wistar , Substância P/farmacologia , Fatores de Tempo
11.
Neurosci Biobehav Rev ; 157: 105523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142983

RESUMO

The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.


Assuntos
Relógios Circadianos , Neurociências , Humanos , Neurofisiologia , Ritmo Circadiano/genética , Relógios Circadianos/genética
12.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38777263

RESUMO

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Comportamento Exploratório , Reconhecimento Psicológico , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Emoções/efeitos dos fármacos , Emoções/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Ratos Wistar
13.
Neurosci Biobehav Rev ; 144: 104930, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544301

RESUMO

Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.


Assuntos
Memória Episódica , Ratos , Animais , Reconhecimento Psicológico , Roedores , Sono
14.
Nat Commun ; 14(1): 6007, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752149

RESUMO

Social recognition memory (SRM) is a key determinant of social interactions. While the cerebellum emerges as an important region for social behavior, how cerebellar activity affects social functions remains unclear. We selectively increased the excitability of molecular layer interneurons (MLIs) to suppress Purkinje cell firing in the mouse cerebellar vermis. Chemogenetic perturbation of MLIs impaired SRM without affecting sociability, anxiety levels, motor coordination or object recognition. Optogenetic interference of MLIs during distinct phases of a social recognition test revealed the cerebellar engagement in the retrieval, but not encoding, of social information. c-Fos mapping after the social recognition test showed that cerebellar manipulation decreased brain-wide interregional correlations and altered network structure from medial prefrontal cortex and hippocampus-centered to amygdala-centered modules. Anatomical tracing demonstrated hierarchical projections from the central cerebellum to the social brain network integrating amygdalar connections. Our findings suggest that the cerebellum organizes the neural matrix necessary for SRM.


Assuntos
Vermis Cerebelar , Camundongos , Animais , Cerebelo , Células de Purkinje/fisiologia , Interneurônios/fisiologia , Transtornos da Memória
15.
Neurosci Biobehav Rev ; 141: 104855, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089106

RESUMO

Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.


Assuntos
Córtex Pré-Frontal , Roedores , Animais , Giro do Cíngulo , Hipocampo/fisiologia , Camundongos , Córtex Pré-Frontal/fisiologia , Ratos , Reconhecimento Psicológico/fisiologia
16.
Neuroscience ; 493: 41-51, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35461978

RESUMO

Alterations in cognitive functions, social behaviors and stress reactions are commonly diagnosed in chronic mental illnesses (CMI). Animal models expressing mutant genes associated to CMI represent either rare mutations or those contributing only minimally to genetic risk. Non-genetic causes of CMI can be modeled by disturbing downstream signaling pathways, for example by inducing protein misassembly or aggregation. The Disrupted-in-Schizophrenia 1 (DISC1) gene was identified to be disrupted and thereby haploinsufficient in a large pedigree where it was associated with CMI. In a subset of CMI patients, the DISC1 protein misassembles to an insoluble protein. This has been modeled in a rat (tgDISC1 rat) where the full-length, non mutant human transgene was overexpressed and cognitive impairments were observed. Here, we investigated the scope of effects of DISC1 protein misassembly by investigating spatial memory, social behavior and stress resilience. In water maze tasks, the tgDISC1 rats showed intact spatial learning and memory, but were deficient in flexible adaptation to spatial reversal learning compared to littermate controls. They also displayed less social interaction. Additionally, there was a trend towards increased corticosterone levels after restraint stress in the tgDISC1 rats. Our findings suggest that DISC1 protein misassembly leads to disturbances of cognitive flexibility and social behaviors, and might also be involved in stress sensitization. Since the observed behavioral features resemble symptoms of CMI, the tgDISC1 rat may be a valuable model for the investigation of cognitive, social and - possibly - also stress-related symptoms of major mental illnesses.


Assuntos
Proteínas do Tecido Nervoso , Esquizofrenia , Comportamento Social , Animais , Cognição , Modelos Animais de Doenças , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Esquizofrenia/genética , Esquizofrenia/metabolismo
17.
Psychopharmacology (Berl) ; 238(9): 2419-2428, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33982142

RESUMO

RATIONALE: Studies on the attention-deficit/hyperactivity disorder (ADHD) have concluded that the disorder might be caused by a deficit in the inhibitory control of executive functions because of dopamine hypofunction. Recently, the intranasal route has emerged as an effective alternative means for sending dopamine directly to the brain. However, whether the treatment can ameliorate the deficits of inhibitory control in ADHD remains unknown. OBJECTIVES: Investigating the effects of acute intranasal dopamine (IN-DA) on the inhibitory control of executive functions of an ADHD rodent model. METHODS: We trained an animal model of ADHD, the spontaneously hypertensive rat (SHR), and Wistar rats as controls, in an attentional set-shifting task (ASST) in which dopamine (0.15 mg/kg, 0.3 mg/kg, or vehicle) was intranasally administered before the final test. RESULTS: IN-DA application dose-dependently improved the performance and reduced errors of SHR in the initial reversal learning. The effect size was comparable to that of a peripheral injection of 0.6 mg/kg methylphenidate. In control Wistar rats, the highest dose of intranasal dopamine (0.3 mg/kg) induced deficits in the reversal learning of extradimensional discriminations. CONCLUSIONS: The findings suggest that the IN-DA treatment has potential for use in the treatment of ADHD; however, caution must be exercised when determining the dosage to be administered, because too much dopamine may have negative effects.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Modelos Animais de Doenças , Dopamina , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Reversão de Aprendizagem
18.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943821

RESUMO

Although circadian rhythms are thought to be essential for maintaining body health, the effects of chronic circadian disruption during neurodevelopment remain elusive. Here, using the "Short Day" (SD) mouse model, in which an 8 h/8 h light/dark (LD) cycle was applied from embryonic day 1 to postnatal day 42, we investigated the molecular and behavioral changes after circadian disruption in mice. Adult SD mice fully entrained to the 8 h/8 h LD cycle, and the circadian oscillations of the clock proteins, PERIOD1 and PERIOD2, were disrupted in the suprachiasmatic nucleus and the hippocampus of these mice. By RNA-seq widespread changes were identified in the hippocampal transcriptome, which are functionally associated with neurodevelopment, translational control, and autism. By western blotting and immunostaining hyperactivation of the mTOR and MAPK signaling pathways and enhanced global protein synthesis were found in the hippocampi of SD mice. Electrophysiological recording uncovered enhanced excitatory, but attenuated inhibitory, synaptic transmission in the hippocampal CA1 pyramidal neurons. These functional changes at synapses were corroborated by the immature morphology of the dendritic spines in these neurons. Lastly, autistic-like animal behavioral changes, including impaired social interaction and communication, increased repetitive behaviors, and impaired novel object recognition and location memory, were found in SD mice. Together, these results demonstrate molecular, cellular, and behavioral changes in SD mice, all of which resemble autistic-like phenotypes caused by circadian rhythm disruption. The findings highlight a critical role for circadian rhythms in neurodevelopment.


Assuntos
Envelhecimento/patologia , Transtorno Autístico/fisiopatologia , Comportamento Animal , Encéfalo/embriologia , Encéfalo/efeitos da radiação , Ritmo Circadiano/fisiologia , Luz , Animais , Transtorno Autístico/genética , Relógios Biológicos/genética , Ritmo Circadiano/genética , Espinhas Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Atividade Motora , Fotoperíodo , Biossíntese de Proteínas , Fatores de Risco , Transmissão Sináptica , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
19.
Neurosci Biobehav Rev ; 113: 373-407, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32298711

RESUMO

Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.


Assuntos
Memória Episódica , Animais , Comportamento Exploratório , Hipocampo , Camundongos , Vias Neurais , Córtex Pré-Frontal , Ratos , Reconhecimento Psicológico , Roedores
20.
Mol Brain ; 13(1): 111, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778145

RESUMO

The dopamine (DA) system has a profound impact on reward-motivated behavior and is critically involved in neurodevelopmental disorders, such as autism spectrum disorder (ASD). Although DA defects are found in autistic patients, it is not well defined how the DA pathways are altered in ASD and whether DA can be utilized as a potential therapeutic agent for ASD. To this end, we employed a phenotypic and a genetic ASD model, i.e., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice and Fragile X Mental Retardation 1 knockout (Fmr1-KO) mice, respectively. Immunostaining of tyrosine hydroxylase (TH) to mark dopaminergic neurons revealed an overall reduction in the TH expression in the substantia nigra, ventral tegmental area and dorsal striatum of BTBR mice, as compared to C57BL/6 J wild-type ones. In contrast, Fmr1-KO animals did not show such an alteration but displayed abnormal morphology of TH-positive axons in the striatum with higher "complexity" and lower "texture". Both strains exhibited decreased expression of striatal dopamine transporter (DAT) and increased spatial coupling between vesicular glutamate transporter 1 (VGLUT1, a label for glutamatergic terminals) and TH signals, while GABAergic neurons quantified by glutamic acid decarboxylase 67 (GAD67) remained intact. Intranasal administration of DA rescued the deficits in non-selective attention, object-based attention and social approaching of BTBR mice, likely by enhancing the level of TH in the striatum. Application of intranasal DA to Fmr1-KO animals alleviated their impairment of social novelty, in association with reduced striatal TH protein. These results suggest that although the DA system is modified differently in the two ASD models, intranasal treatment with DA effectively rectifies their behavioral phenotypes, which may present a promising therapy for diverse types of ASD.


Assuntos
Transtorno Autístico/tratamento farmacológico , Dopamina/metabolismo , Dopamina/uso terapêutico , Administração Intranasal , Animais , Atenção , Comportamento Animal , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento Exploratório , Proteínas Fetais/metabolismo , Fractais , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Proteínas com Domínio T/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA