Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 79(3): 459-471.e4, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32553192

RESUMO

Transcription factors (TFs) that bind common DNA motifs in vitro occupy distinct sets of promoters in vivo, raising the question of how binding specificity is achieved. TFs are enriched with intrinsically disordered regions (IDRs). Such regions commonly form promiscuous interactions, yet their unique properties might also benefit specific binding-site selection. We examine this using Msn2 and Yap1, TFs of distinct families that contain long IDRs outside their DNA-binding domains. We find that these IDRs are both necessary and sufficient for localizing to the majority of target promoters. This IDR-directed binding does not depend on any localized domain but results from a multitude of weak determinants distributed throughout the entire IDR sequence. Furthermore, IDR specificity is conserved between distant orthologs, suggesting direct interaction with multiple promoters. We propose that distribution of sensing determinants along extended IDRs accelerates binding-site detection by rapidly localizing TFs to broad DNA regions surrounding these sites.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/genética , Motivos de Nucleotídeos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Deleção de Sequência , Fatores de Transcrição/genética , Sítios de Ligação , Biologia Computacional/métodos , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Estatísticos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 58(1): 147-56, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25728770

RESUMO

Bursts of nascent mRNA have been shown to lead to substantial cell-cell variation in unicellular organisms, facilitating diverse responses to environmental challenges. It is unknown whether similar bursts and gene-expression noise occur in mammalian tissues. To address this, we combine single molecule transcript counting with dual-color labeling and quantification of nascent mRNA to characterize promoter states, transcription rates, and transcript lifetimes in the intact mouse liver. We find that liver gene expression is highly bursty, with promoters stochastically switching between transcriptionally active and inactive states. Promoters of genes with short mRNA lifetimes are active longer, facilitating rapid response while reducing burst-associated noise. Moreover, polyploid hepatocytes exhibit less noise than diploid hepatocytes, suggesting a possible benefit to liver polyploidy. Thus, temporal averaging and liver polyploidy dampen the intrinsic variability associated with transcriptional bursts. Our approach can be used to study transcriptional bursting in diverse mammalian tissues.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , Transcrição Gênica , Animais , Meia-Vida , Hepatócitos/citologia , Homeostase/genética , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Ploidias , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Análise de Célula Única
3.
PLoS Biol ; 17(11): e3000289, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31756183

RESUMO

Gene duplication promotes adaptive evolution in two main ways: allowing one duplicate to evolve a new function and splitting ancestral functions between the duplicates. The second scenario may resolve adaptive conflicts that can rise when one gene performs different functions. In an apparent departure from both scenarios, low-expressing transcription factor (TF) duplicates commonly bind to the same DNA motifs and act in overlapping conditions. To examine for possible benefits of this apparent redundancy, we examined the Msn2 and Msn4 duplicates in budding yeast. We show that Msn2,4 function as one unit by inducing the same set of target genes in overlapping conditions. Yet, the two-factor composition allows this unit's expression to be both environmentally responsive and with low noise, resolving an adaptive conflict that limits expression of single genes. We propose that duplication can provide adaptive benefit through cooperation rather than functional divergence, allowing two-factor dynamics with beneficial properties that cannot be achieved by a single gene.


Assuntos
Proteínas de Ligação a DNA/genética , Duplicação Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Genes Duplicados , Distribuição de Poisson , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
4.
Cell Rep ; 30(12): 3989-3995.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209462

RESUMO

Genome replication perturbs the DNA regulatory environment by displacing DNA-bound proteins, replacing nucleosomes, and introducing dosage imbalance between regions replicating at different S-phase stages. Recently, we showed that these effects are integrated to maintain transcription homeostasis: replicated genes increase in dosage, but their expression remains stable due to replication-dependent epigenetic changes that suppress transcription. Here, we examine whether reduced transcription from replicated DNA results from limited accessibility to regulatory factors by measuring the time-resolved binding of RNA polymerase II (Pol II) and specific transcription factors (TFs) to DNA during S phase in budding yeast. We show that the Pol II binding pattern is largely insensitive to DNA dosage, indicating limited binding to replicated DNA. In contrast, binding of three TFs (Reb1, Abf1, and Rap1) to DNA increases with the increasing DNA dosage. We conclude that the replication-specific chromatin environment remains accessible to regulatory factors but suppresses RNA polymerase recruitment.


Assuntos
Replicação do DNA , DNA Fúngico/metabolismo , Fatores de Transcrição/metabolismo , Genoma Fúngico , Ligação Proteica , RNA Polimerase II/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA