Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.939
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(7): 1493-1511.e40, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001506

RESUMO

Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (∼30 tissues × âˆ¼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.


Assuntos
Epigenoma , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Nat Immunol ; 24(8): 1382-1390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500887

RESUMO

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Microglia , Doença de Alzheimer/genética , Encéfalo
3.
Cell ; 170(3): 522-533.e15, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753427

RESUMO

Genome-wide association studies (GWASs) implicate the PHACTR1 locus (6p24) in risk for five vascular diseases, including coronary artery disease, migraine headache, cervical artery dissection, fibromuscular dysplasia, and hypertension. Through genetic fine mapping, we prioritized rs9349379, a common SNP in the third intron of the PHACTR1 gene, as the putative causal variant. Epigenomic data from human tissue revealed an enhancer signature at rs9349379 exclusively in aorta, suggesting a regulatory function for this SNP in the vasculature. CRISPR-edited stem cell-derived endothelial cells demonstrate rs9349379 regulates expression of endothelin 1 (EDN1), a gene located 600 kb upstream of PHACTR1. The known physiologic effects of EDN1 on the vasculature may explain the pattern of risk for the five associated diseases. Overall, these data illustrate the integration of genetic, phenotypic, and epigenetic analysis to identify the biologic mechanism by which a common, non-coding variant can distally regulate a gene and contribute to the pathogenesis of multiple vascular diseases.


Assuntos
Doença da Artéria Coronariana/genética , Endotelina-1/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Doenças Vasculares/genética , Acetilação , Células Cultivadas , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Células Endoteliais/citologia , Endotelina-1/sangue , Epigenômica , Edição de Genes , Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Músculo Liso Vascular/citologia
4.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206740

RESUMO

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Canais de Cálcio , Proteínas de Ligação ao Cálcio/genética , Dissulfetos/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Espécies Reativas de Oxigênio/metabolismo
5.
CA Cancer J Clin ; 72(4): 308-314, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325473

RESUMO

Twenty years after the September 11th, 2001 terrorist attacks, the association between exposures present at the World Trade Center (WTC) site and the risk of several specific types of cancer has been reported among rescue and recovery workers. The authors' objective was to conduct an updated review of these data. Most studies have found elevated rates of both prostate and thyroid cancers compared with rates in the general population, and some have reported statistically significant differences for the rates of all cancers as well. Studies including a larger combined cohort of WTC-exposed rescue and recovery workers from 3 main cohorts have since replicated findings for these cancers, with additional years of follow-up. Among this combined cohort, although a lower-than-expected standardized incidence ratio for all cancers was observed, WTC exposure was also related to an increased risk of cutaneous melanoma and tonsil cancer. Importantly, another study found that WTC-exposed rescue and recovery workers who are enrolled in the federally funded medical monitoring and treatment program experienced improved survival post-cancer diagnosis compared with New York state patients with cancer. On the basis of these combined cohort studies, the full effect of WTC exposure on cancer risk is becoming clearer. Consequently, the authors believe that surveillance of those with WTC exposure should be continued, and in-depth analysis of epidemiologic, molecular, and clinical aspects of specific cancers in these workers should be pursued.


Assuntos
Melanoma , Exposição Ocupacional , Ataques Terroristas de 11 de Setembro , Neoplasias Cutâneas , Estudos de Coortes , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Trabalho de Resgate
6.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
7.
Cell ; 152(3): 642-54, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23333102

RESUMO

Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Epigênese Genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Núcleo Celular , Senescência Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Especificidade de Órgãos
8.
Nature ; 602(7895): 101-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022609

RESUMO

Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.


Assuntos
Arabidopsis/genética , Evolução Molecular , Modelos Genéticos , Mutagênese , Mutação , Seleção Genética/genética , Epigenoma/genética , Epigenômica , Frequência do Gene , Genes Essenciais/genética , Genes de Plantas/genética , Genoma de Planta/genética , Taxa de Mutação , Polimorfismo Genético/genética
9.
Nature ; 612(7941): 787-794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450980

RESUMO

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Assuntos
Neoplasias Encefálicas , Transformação Celular Neoplásica , Feto , Meduloblastoma , Humanos , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/patologia , Cerebelo/citologia , Cerebelo/patologia , Feto/citologia , Feto/patologia , Meduloblastoma/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/patologia , Prognóstico
10.
Nat Rev Genet ; 22(12): 791-807, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34408318

RESUMO

The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.


Assuntos
Variação Genética , Genética , Animais , Biodiversidade , Bases de Dados Genéticas , Técnicas Genéticas , Genética Populacional , Humanos , Filogeografia , Fluxo de Trabalho
11.
Cell ; 149(7): 1474-87, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726435

RESUMO

A large fraction of the mammalian genome is organized into inactive chromosomal domains along the nuclear lamina. The mechanism by which these lamina associated domains (LADs) are established remains to be elucidated. Using genomic repositioning assays, we show that LADs, spanning the developmentally regulated IgH and Cyp3a loci contain discrete DNA regions that associate chromatin with the nuclear lamina and repress gene activity in fibroblasts. Lamina interaction is established during mitosis and likely involves the localized recruitment of Lamin B during late anaphase. Fine-scale mapping of LADs reveals numerous lamina-associating sequences (LASs), which are enriched for a GAGA motif. This repeated motif directs lamina association and is bound by the transcriptional repressor cKrox, in a complex with HDAC3 and Lap2ß. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs from the nuclear lamina. These results reveal a mechanism that couples nuclear compartmentalization of chromatin domains with the control of gene activity.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Mitose , Lâmina Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , DNA/química , Drosophila/metabolismo , Histona Desacetilases/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Células NIH 3T3 , Membrana Nuclear/metabolismo , Transcrição Gênica
12.
Nature ; 593(7858): 238-243, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828297

RESUMO

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.


Assuntos
Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença , Variação Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Linhagem Celular , Cromossomos Humanos Par 10/genética , Ciclofilinas/genética , Células Dendríticas , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Mitocôndrias/metabolismo , Especificidade de Órgãos/genética , Fenótipo
13.
Proc Natl Acad Sci U S A ; 121(5): e2307065121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266048

RESUMO

River ecosystem function depends on flow regimes that are increasingly modified by changes in climate, land use, water extraction, and flow regulation. Given the wide range of variation in flow regime modifications and autotrophic communities in rivers, it has been challenging to predict which rivers will be more resilient to flow disturbances. To better understand how river productivity is disturbed by and recovers from high-flow disturbance events, we used a continental-scale dataset of daily gross primary production time series from 143 rivers to estimate growth of autotrophic biomass and ecologically relevant flow disturbance thresholds using a modified population model. We compared biomass recovery rates across hydroclimatic gradients and catchment characteristics to evaluate macroscale controls on ecosystem recovery. Estimated biomass accrual (i.e., recovery) was fastest in wider rivers with less regulated flow regimes and more frequent instances of biomass removal during high flows. Although disturbance flow thresholds routinely fell below the estimated bankfull flood (i.e., the 2-y flood), a direct comparison of disturbance flows estimated by our biomass model and a geomorphic model revealed that biomass disturbance thresholds were usually greater than bed disturbance thresholds. We suggest that primary producers in rivers vary widely in their capacity to recover following flow disturbances, and multiple, interacting macroscale factors control productivity recovery rates, although river width had the strongest overall effect. Biomass disturbance flow thresholds varied as a function of geomorphology, highlighting the need for data such as bed slope and grain size to predict how river ecosystems will respond to changing flow regimes.


Assuntos
Ecossistema , Inundações , Rios , Biomassa , Clima
14.
Cell ; 147(7): 1628-39, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196736

RESUMO

Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Genômica/métodos , Código das Histonas , Cromatina/química , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias , Genoma , Humanos , Células K562
15.
Nature ; 583(7818): 699-710, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728249

RESUMO

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Assuntos
DNA/genética , Bases de Dados Genéticas , Genoma/genética , Genômica , Anotação de Sequência Molecular , Sistema de Registros , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cromatina/genética , Cromatina/metabolismo , DNA/química , Pegada de DNA , Metilação de DNA/genética , Período de Replicação do DNA , Desoxirribonuclease I/metabolismo , Genoma Humano , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética , Transposases/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(46): e2214334120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931104

RESUMO

Civil infrastructure will be essential to face the interlinked existential threats of climate change and rising resource demands while ensuring a livable Anthropocene for all. However, conventional infrastructure planning largely neglects the contributions and maintenance of Earth's ecological life support systems, which provide irreplaceable services supporting human well-being. The stability and performance of these services depend on biodiversity, but conventional infrastructure practices, narrowly focused on controlling natural capital, have inadvertently degraded biodiversity while perpetuating social inequities. Here, we envision a new infrastructure paradigm wherein biodiversity and ecosystem services are a central objective of civil engineering. In particular, we reimagine infrastructure practice such that 1) ecosystem integrity and species conservation are explicit objectives from the outset of project planning; 2) infrastructure practices integrate biodiversity into diverse project portfolios along a spectrum from conventional to nature-based solutions and natural habitats; 3) ecosystem functions reinforce and enhance the performance and lifespan of infrastructure assets; and 4) civil engineering promotes environmental justice by counteracting legacies of social inequity in infrastructure development and nature conservation. This vision calls for a fundamental rethinking of the standards, practices, and mission of infrastructure development agencies and a broadening of scope for conservation science. We critically examine the legal and professional precedents for this paradigm shift, as well as the moral and economic imperatives for manifesting equitable infrastructure planning that mainstreams biodiversity and nature's benefits to people. Finally, we set an applied research agenda for supporting this vision and highlight financial, professional, and policy pathways for achieving it.


Assuntos
Biodiversidade , Ecossistema , Humanos , Mudança Climática , Conservação dos Recursos Naturais
17.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040418

RESUMO

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Assuntos
Cervos , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Animais , New England
18.
PLoS Pathog ; 19(11): e1011788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943965

RESUMO

The SARS-CoV-2 spike glycoprotein has 22 potential N-linked glycosylation sites per monomer that are highly conserved among diverse variants, but how individual glycans affect virus entry and neutralization of Omicron variants has not been extensively characterized. Here we compared the effects of specific glycan deletions or modifications in the Omicron BA.1 and D614G spikes on spike expression, processing, and incorporation into pseudoviruses, as well as on virus infectivity and neutralization by therapeutic antibodies. We found that loss of potential glycans at spike residues N717 and N801 each conferred a loss of pseudovirus infectivity for Omicron but not for D614G or Delta variants. This decrease in infectivity correlated with decreased spike processing and incorporation into Omicron pseudoviruses. Oligomannose-enriched Omicron pseudoviruses generated in GnTI- cells or in the presence of kifunensine were non-infectious, whereas D614G or Delta pseudoviruses generated under similar conditions remained infectious. Similarly, growth of live (authentic) SARS-CoV-2 in the presence of kifunensine resulted in a greater reduction of titers for the BA.1.1 variant than Delta or D614G variants relative to their respective, untreated controls. Finally, we found that loss of some N-glycans, including N343 and N234, increased the maximum percent neutralization by the class 3 S309 monoclonal antibody against D614G but not BA.1 variants, while these glycan deletions altered the neutralization potency of the class 1 COV2-2196 and Etesevimab monoclonal antibodies without affecting maximum percent neutralization. The maximum neutralization by some antibodies also varied with the glycan composition, with oligomannose-enriched pseudoviruses conferring the highest percent neutralization. These results highlight differences in the interactions between glycans and residues among SARS-CoV-2 variants that can affect spike expression, virus infectivity, and susceptibility of variants to antibody neutralization.


Assuntos
COVID-19 , Viroses , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Polissacarídeos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
19.
Annu Rev Nutr ; 44(1): 99-124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38724105

RESUMO

Approximately five million children die each year from preventable causes, including respiratory infections, diarrhea, and malaria. Roughly half of those deaths are attributable to undernutrition, including micronutrient deficiencies (MNDs). The influence of infection on micronutrient status is well established: The inflammatory response to pathogens triggers anorexia, while pathogens and the immune response can both alter nutrient absorption and cause nutrient losses. We review the roles of vitamin A, vitamin D, iron, zinc, and selenium in the immune system, which act in the regulation of molecular- or cellular-level host defenses, directly affecting pathogens or protecting against oxidative stress or inflammation. We further summarize high-quality evidence regarding the synergistic or antagonistic interactions between MNDs, pathogens, and morbidity or mortality relevant to child health in low- and middle-income countries. We conclude with a discussion of gaps in the literature and future directions for multidisciplinary research on the interactions of MNDs, infection, and inflammation.


Assuntos
Micronutrientes , Humanos , Micronutrientes/deficiência , Criança , Saúde da Criança , Infecções/imunologia , Estado Nutricional , Inflamação/imunologia , Zinco/deficiência , Selênio/deficiência , Vitamina A , Pré-Escolar
20.
Am J Respir Crit Care Med ; 209(10): 1229-1237, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163381

RESUMO

Rationale: Low FEV1 is a biomarker of increased mortality. The association of normal lung function and mortality is not well described. Objectives: To evaluate the FEV1-mortality association among participants with normal lung function. Methods: A total of 10,999 Fire Department of the City of New York (FDNY) responders and 10,901 Third National Health and Nutrition Examination Survey (NHANES III) participants, aged 18-65 years with FEV1 ⩾80% predicted, were analyzed, with FEV1 percent predicted calculated using Global Lung Function Initiative Global race-neutral reference equations. Mortality data were obtained from linkages to the National Death Index. Cox proportional hazards models estimated the association between FEV1 and all-cause mortality, controlling for age, sex, race/ethnicity, smoking history, and, for FDNY, work assignment. Cohorts were followed for a maximum of 20.3 years. Measurements and Main Results: We observed 504 deaths (4.6%) of 10,999 for FDNY and 1,237 deaths (9.4% [weighted]) of 10,901 for NHANES III. Relative to FEV1 ⩾120% predicted, mortality was significantly higher for FEV1 100-109%, 90-99%, and 80-89% predicted in the FDNY cohort. In the NHANES III cohort, mortality was significantly higher for FEV1 90-99% and 80-89% predicted. Each 10% higher predicted FEV1 was associated with 15% (hazard ratio, 0.85; 95% confidence interval, 0.80-0.91) and 23% (hazard ratio, 0.77; 95% confidence interval, 0.71-0.84) lower mortality for FDNY and NHANES III, respectively. Conclusions: In both cohorts, higher FEV1 is associated with lower mortality, suggesting higher FEV1 is a biomarker of better health. These findings demonstrate that a single cross-sectional measurement of FEV1 is predictive of mortality over two decades, even when FEV1 is in the normal range.


Assuntos
Inquéritos Nutricionais , Ataques Terroristas de 11 de Setembro , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Volume Expiratório Forçado , Adulto Jovem , Adolescente , Modelos de Riscos Proporcionais , Cidade de Nova Iorque/epidemiologia , Estados Unidos/epidemiologia , Socorristas/estatística & dados numéricos , Pulmão/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA